

Intelligent Code Editor

Design Document

Revised October 6, 2019

sdmay20-46

Ali Jannesari — Client & Adviser

Keaton Johnson — Systems Lead

Jonathan Novak — Machine Learning Lead

Matthew Orth — Meeting Facilitator

Garet Phelps — Report Manager

Isaac Spanier — Test Lead

John Jago — Software Lead

Team Email​: sdmay20-46@iastate.edu

Team Website​: https://sdmay20-46.sd.ece.iastate.edu

Executive Summary

Development Standards & Practices Used

Our work on the Intelligent Code Editor followed standard industry practices in software

development. We followed agile practices with sprints lasting two weeks. We used

test-driven development (TDD) when writing the software. In the software industry,

engineering standards typically measure how well the software is tested, how well any

manual processes are automated, and the quality of the software through the number of

bugs or defects discovered. We will also follow these measures.

Summary of Requirements

Develop the functionality in an IDE or text editor to convert natural language (English)

into Java code.

Applicable Courses from Iowa State University Curriculum

● COM S 227 (Introduction to Object-Oriented Programming)

● COM S 228 (Data Structures)

● COM S 309 (Software Project Management)

● COM S 319 (User Interfaces)

● COM S 472 (Artificial Intelligence)

● COM S 474 (Machine Learning)

● E E 526X (Deep Learning)

New skills/knowledge acquired that was not taught in courses

● Natural Language Processing

1

Table of Contents

Executive Summary 1

Development Standards & Practices Used 1

Summary of Requirements 1

Applicable Courses from Iowa State University Curriculum 1

New skills/knowledge acquired that was not taught in courses 1

Table of Contents 2

1. Introduction 4

1.1 Acknowledgement 4

1.2 Project and Problem Statement 4

1.2.1 Problem Statement 4

1.2.2 Solution Approach 4

1.3 Operational Environment 5

1.4 Requirements 5

1.4.1 Functional Requirements 5

1.4.2 Non-Functional Requirements 5

1.4.3 UI Requirements 5

1.5 Intended Users and Uses 5

1.6 Assumptions and Limitations 6

1.6.1 Assumptions 6

1.6.2 Limitations 6

1.7 Expected End Project and Deliverables 6

2. Specifications and Analysis 8

2.1 Proposed Design 8

2.2 Design Analysis 8

2.3 Development Process 9

2.4 Design Plan 10

3. Statement of Work 12

3.1 Previous Work and Literature 12

3.2 Technology Considerations 13

3.3 Task Decomposition 13

3.4 Possible Risks and Risk Management 14

2

3.5 Project Proposed Milestones and Evaluation Criteria 15

3.6 Project Tracking Procedures 16

3.7 Expected Results and Validation 16

4. Project Timeline, Estimated Resources, and Challenges 17

4.1 Project Timeline 17

4.2 Feasibility Assessment 18

4.3 Personnel Effort Requirements 18

4.4 Other Resource Requirements 19

4.5 Financial Requirements 19

5. Testing and Implementation 20

5.1 Interface Specifications 20

5.2 Hardware and Software 20

5.3 Functional Testing 20

5.4 Non-Functional Testing 20

5.5 Process 20

5.6 Results 20

6. Closing Material 21

6.1 Conclusion 21

6.1.1 Development Progress 21

6.1.2 Summary 21

6.2 References 21

6.3 Appendices 22

3

1. Introduction

1.1 Acknowledgement

We would like to thank Professor Ali Jannesari for his guidance on this project not only as

the primary client, but also as the faculty advisor. We would also like to thank Hung Phan

for sharing his knowledge and for his involvement.

1.2 Project and Problem Statement

1.2.1 Problem Statement

With software becoming more prevalent in fields where it previously did not exist, more

people must learn how to write programs to accomplish their work. One example is

bioinformatics. At Iowa State, COM S 444: Bioinformatic Analysis is cross listed with

Biology and Genetics, among other majors. Students in these majors do not necessarily

have to become top programmers to do their work, but their work involves programming

nonetheless. A lack of experience in programming can become an unnecessary hindrance

to getting the work done, especially when trying to figure out the syntax of a programming

language.

1.2.2 Solution Approach

Our goal is to provide a method for users to type what they want to accomplish in natural

language and convert that natural language to the software code. This would allow

someone who doesn’t know how to write a particular statement in a programming

language to type an approximation of that statement in English and have the editor

convert the English to executable code.

The primary deliverable is a plugin to an existing integrated development environment

(IDE) or text editor through which the user will interact with to translate natural language

to code. Behind the scenes will be a classification engine that handles the actual

conversion of English to code. Also produced will be a data set of possible natural

language inputs that someone might type and the expected result, which will allow us to

test the accuracy of our final product.

4

1.3 Operational Environment

The IDE plugin that we will develop along with the other software components will reside

on computers and possibly remote servers. One major risk is that malicious software

might be able to read data from our services. While we are not storing personal

information, is it possible that people might not want their English (or the resulting code)

exposed, as this could leak enough information for an attack on the program that the user

is writing. Therefore, we will take into consideration the security of our software,

especially if it communicates over a network.

1.4 Requirements

1.4.1 Functional Requirements

● User can select or otherwise input the text they wish to translate to code

● User can trigger a translate action

● The textual descriptions are replaced by the translated code fragments

● The translated code fragments can be executed as regular code

● Multiple selections can be translated at the same time

1.4.2 Non-Functional Requirements

● Translation time should be fast so it does not slow down the user’s development

pace

● The user interface should be clean and easy to understand

1.4.3 UI Requirements

● Translation action should be easily accessible from the text editor area

1.5 Intended Users and Uses

Users and their uses of this product:

● Someone who does not explicitly write code for their job, but needs to utilize

programming for certain aspects and doesn’t want to spend a large amount of time

learning to code.

● A developer who is not intimately familiar with a particular language they would

like to use, but can express the concepts they want in natural language or

pseudo-code.

5

1.6 Assumptions and Limitations

1.6.1 Assumptions

● The user will enter their natural language statements in the general format we

expect

● The user will enter their natural language statement in the location in the editor

they want the translated code inserted

● The user will enter only natural language statements supported by the system’s

dataset

1.6.2 Limitations

● Translations will only be supported for common code syntax, methods, and classes.

● Translation may not generate the proper translation on the first attempt

● Translation will not occur for natural language statements not represented in the

dataset

● Translations are only support from English to Java source code

● There is no budget provided for this project

1.7 Expected End Project and Deliverables

User Interface (November 2019):

The user interface (UI) will present the user with an Intelligent Development Environment

(IDE) text editor where the user can enter their natural language statements representing

the program they want to translate to code. The user interface will also allow the user to

interact with the system to translate their natural language statements to equivalent

code. Once the translate button is interacted with, the natural language statement will be

passed to the classification/translation engine. The UI will then accept the translated code

from the Translation Engine and display it in the editor at the location where the original

natural language statement is.

Database/Dataset (December 2019):

6

The database will store the natural language statement representing a program and the

expected code translation. The data from the database will serve as the training dataset

for the classification model.

Classification and Translation Engine (February 2020):

The classification and translation engine will take the natural language statement passed

from the UI. The statement will be passed as input to the classification model. The model

will then use the input to produce an output that represents the tokenized expected code

translation. This output will then be passed to the translation engine that will convert the

tokenized code to the equivalent code. Finally, the translation engine will pass the

expected translation to the UI.

Final Product (April 2020):

The final Intelligent Code Editor project will connect the User Interface, Database, and

Classification/Translation Engine. This will create a complete end-to-end translation

system.

7

2. Specifications and Analysis

2.1 Proposed Design

Our group is currently in the research and development stage of our project, so the below
items are subject to change. The below items are the results of our initial research.

User Interface (UI):

An IntelliJ plugin will be created for the user interface. This plugin will present the user
with an IDE text/code editor where they can enter their natural language statements. It
will also give the user the ability to translate the natural language statement to code
through some interaction button. The plugin will additionally connect to the classification
and translation engine, passing the natural language statement and receiving and
displaying the expected code translation. Finally, the translated code needs to be
executable by the user.

Classification and Translation Engine:

The Classification engine will be implemented using OpenNMT-py. The OpenNMT-py
model will be trained using the dataset stored in the database. The natural language
statement from the UI will be input and the engine will output a tokenization of the
expected translated code. This tokenized output will be passed to the translation engine,
which will convert it to actual code that will be passed to the UI for display.

Database:

The database will be created using MongoDB. The database will store the natural
language statements, expected translation pairs. MongoDB was chosen for the database
as the natural language statements and expected translations will be unstructured data.
The database will receive the dataset from the UI and will pass the dataset to the
classification engine for training.

2.2 Design Analysis

Currently, our team is in the research and development stages. We have been researching
tools and strategies to implement the user interface, database, and
classification/translation engine. Through this research, initial strengths and weaknesses
have been determined.

Strengths:

8

For the user interface, documentation for creating an IntelliJ plugin is significant and
there is a large community for it. An IntelliJ plugin is also easy to install and use in the
IntelliJ editor.

OpenNMT-py is a well-documented and widely used Neural Machine Translation engine
that will convert the natural language statement to expected code. One major strength of
OpenNMT-py is that it comes with training model templates, resembling modern
techniques for neural machine translation. This will simplify the process of creating a
model from scratch as that is something that requires a significant amount of experience.

Weaknesses:

When creating an IntelliJ plugin, it does not allow the user to modify everything about the
code editor, so we will have to ensure that we can modify what is necessary.

Some weaknesses of using OpenNMT-py are the models take a long time to train.
However, this would be a problem regardless of the system we chose to implement it with.
We will also need to determine how to create a representative dataset that will allow us
to effectively train the model. This could take a long time to produce.

2.3 Development Process

Our team is following the Agile Development Process. Our team will have weekly
meetings where we will review our project progress, update our task board, and plan
future work. Bi-weekly meetings will be held where demos of our progress will be shown
and feedback will be received to further improve our design. Testing our design
throughout the design process will also be incorporated. This means that our
requirements will be continuously changing throughout the development process.

9

2.4 Design Plan

The User Interface will pass the natural language statement to the classification engine. It

will also pass the natural language statement and expected code translation to the

Database if necessary.

The Database will store the natural language statement and expected code translation in

the dataset. The Database will then pass the dataset to the Classification Engine for

training.

The Classification Engine will train its model on the dataset. It will then take the natural

language statement as input to the trained model. The trained model will then output the

tokenized expected translation to the Translation Engine.

10

The Translation Engine will convert the tokenized input to the expected code translation

that will be passed to the user interface to display and execute.

11

3. Statement of Work

3.1 Previous Work and Literature

User Interface:

Our research for the user interface started with the IntelliJ plugin API documentation [3].

Here we found useful information about what functionality was available for creating a

custom IntelliJ plugins. We also utilized various documentation resources for creating an

Eclipse Plugin [2] and Visual Studio Code Extension [1]; however, we did not find as many

documentation resources and a large community for these plugins. This led us to choose

an IntelliJ plugin.

Classification/Translation Engine:

We read many different research papers to determine methods to implement neural

machine translation. From these, we determined that modern Neural Machine Translation

mechanisms like the Transformer model are some of the best performing models [7]. With

this information, we researched tools that can execute this kind of neural machine

translation. We then found OpenNMT-py [4], which has easy interaction with modern

neural machine translation models as we were able to train a model for language

translation within a couple of hours.

Current systems that translate natural language to code require structured input from the

user [6]. Our system will aim to allow the user to enter more unstructured natural

language statements and convert that to equivalent code. Also, most other current

systems only convert to a simpler language like the command line instead of a more

complex programming language like our project will do.

Database:

We used our knowledge from CS 363 where we learned about MongoDB [5]. Since

MongoDB works well with unstructured data, we determined this was an optimal

database tool to use.

12

3.2 Technology Considerations

Strengths:

For the user interface, documentation for creating an IntelliJ plugin is abundant and there
is a large community for it. An IntelliJ plugin is also easy to install and use in the IntelliJ
editor, making is something a user would more likely use.

OpenNMT-py is a well-documented and widely used Neural Machine Translation engine
that will convert our natural language statement to expected code. One major strength of
OpenNMT-py is that is comes with training model templates resembling modern
techniques for neural machine translation while also giving more customization options.
This means we could use a model like the Transformer model without having to configure
this ourselves. This will simplify the process of creating a model from scratch as that is
something that requires a significant more amount of experience with Machine Learning
and Natural Language Processing.

Weaknesses:

When creating an IntelliJ plugin, it does not allow the user to modify everything about the
code editor, so we will have to ensure that we can modify what is necessary. This can be
solved by either modifying our features or determining other mechanisms aside from
IntelliJ plugins to implement those features.

Some weaknesses of using OpenNMT-py are the models take a long time to train.
However, this would be a problem regardless of the system we chose to implement it with.
This can be solved by requesting more powerful computers or servers to execute the
training and classification of the model. Creating a representative dataset to effectively
train the model will also be a challenge. This could take a long time to produce, but the
process can be simplified by either utilizing already created datasets or determining other
ways to automatically create the dataset.

3.3 Task Decomposition

The following project tasks are based on our initial research into the project, and may

change.

● Research:

○ Research and test tools for creating IDE plugin / plugin

○ Research tools for natural language to code translation

○ Research tools for using a database to store a dataset

13

● User Interface (IntelliJ plugin):

○ Modify the IntelliJ IDE to allow the user to enter both natural language

statements and code

○ Create mechanism that allows the user to translate the natural language

statement to code

○ Connect the UI to the Database, Classification, and Translation Engine

● Database:

○ Create a dataset that will be used to train the classification model

○ Store the natural language statement, expected code translation pairs for

training the training dataset

○ Pass the training dataset to the Classification Engine

● Classification Engine:

○ Use a dataset to train the natural language statement to code translation

model

○ Be able to take a natural language statement from the UI as input and

convert it to a tokenization of the expected code

○ Pass the expected code tokenization to the translation engine

● Translation Engine:

○ Take the expected code tokenization from the classification engine and

translate to code

○ Pass the expected code translation to the UI

● Testing:

○ Write unit, GUI, and integrate tests

○ Run usability tests

○ Make improvements based on testing results

3.4 Possible Risks and Risk Management

A potential risk is a lack of knowledge in natural language processing. This starts with

creating a large and representative enough database for training the classification model.

Usually, datasets require thousands of entries, which could take a long time to create. For

this, we may need to determine an automated way of creating the dataset or using an

already generated dataset.

14

Once we have our dataset, training the classification model is a lengthy process, requiring

powerful computing. We will likely need a dedicated computer or server for this purpose.

Finally, once the model is trained, accuracy of the translation may be an issue. Even

modern neural machine translation systems are unlikely to correctly translate natural

language to code accurately [6]. We may need to give possible translation options to the

user or require the user to enter more structured queries to compensate.

3.5 Project Proposed Milestones and Evaluation Criteria

The first milestone for the project will be researching and determining which user

interface (UI), database, and classification/translation engine tools we want to use. This

will uncover the initial direction of the project.

After the UI, database, and classification/translation tools are selected, the next milestone

will be creating simple demos of using the UI, Database, and Classification/Translation

engine for our purpose in isolation. This will involve giving fake data to these systems to

ensure they behave correctly in isolation.

After everything is working in isolation, the next milestone will be to connect everything

to ensure the system works end-to-end. This means the user will provide the natural

language statement to the editor and the translation engine will provide the UI with the

expected translated code to display.

Major milestones after this will involve improving the classification/translation engine to

translate more complicated natural language statements (methods, classes, algorithms,

etc.). This will likely require improving our training model with an updated dataset.

The final milestone for the project will involve testing and verification of the design. This

will involve writing tests and running usability tests to ensure our design works as

expected and can be used the way we expect.

15

3.6 Project Tracking Procedures

Our group will utilize GitLab, Trello, and GroupMe to track our progress throughout the

semester. GitLab will be used to manage our project code. Each team member will develop

in their individual branch and merge that into the master branch when ready.

Trello will be used to manage task creation and assignment. Each task will have a title,

description, assigned member, and due date. There will be a backlog, doing, done, and

completed column. These will represent tasks yet to be assigned, currently being worked

on, done, and verified respectively.

GroupMe will be utilized for immediate communication with the team. Here, we will

communicate meeting times, quick questions, and other communication.

3.7 Expected Results and Validation

Our desired outcome is to create an end-to-end system where the user can enter a natural

language statement into the code editor and the system will be able to translate the

statement to equivalent code that will be displayed and be executable by the user in the

editor.

Our implementation will be validated by creating unit and GUI test and through usability

tests. This will ensure that our system behaves as expected and is easily usable by the

users. This testing and usability tests will be developed throughout the development

process to ensure we are creating an optimal solution.

16

4. Project Timeline, Estimated Resources, and
Challenges

4.1 Project Timeline

This is a early-stage draft of our project timeline. It is subject to change.

Key:

● UI = User Interface

● GUI = Graphical User Interface

The first major stage of the project will be to conduct the initial research of the UI,

database, and classification/translation engine tools we want to use.

The second major stage involves setting up and creating the basic functionality for the UI,

database, and classification/translation engine. For the UI, the natural language input and

translation interaction will be configured. The database will then be configured to store

the dataset. Finally, the classification/translation engine will be configured, trained on a

basic dataset, and setup as a server.

Connectivity between the UI, database, and classification/translation engine will be the

next major task. This task will involve connecting the UI to the database and classification

engine, the database to the classification/translation engine, and the

classification/translation engine to the UI. We will then ensure that we can correctly send

information between these systems.

17

The final stage will involve fine tuning, testing, and validating our results. This will start

with fine tuning the dataset and classification/translation engine for best results. Next, we

will begin writing the automated tests, end-to-end tests, and user validation testing.

Finally, we will take the feedback from those tests to improve our final design.

4.2 Feasibility Assessment

The end-to-end natural language to code translation system explained above is very

ambitious. Current systems struggle obtaining high accuracies for this purpose. Because

of this, a more reasonable solution to this project may be to have the user enter more

structured statements that the classification model can more easily learn from.

Another challenge will be creating a large enough dataset that will allow the trained model

to be more accurate. As a result, our system may need to compensate by requiring the

user to reenter their statement or give the user suggestions for translations. However,

these restrictions and feasibility assessments will be more accurate as we progress more

in the project.

4.3 Personnel Effort Requirements

These are very rough time estimates, and they will be updated to more accurate values

once we begin the implementation phase of the project.

● Research: [100 hours]

○ Research and test tools for creating IDE plugin [30 hours]

○ Research tools for natural language to code translation [50 hours]

○ Research tools for using a database to store a dataset [20 hours]

● User Interface (IntelliJ plugin): [150 hours]

○ Modify the IntelliJ IDE to allow the user to enter both natural language

statements and code [30 hours]

○ Create mechanism that allows the user to translate the natural language

statement to code [20 hours]

○ Connect the UI to the Database, Classification, and Translation Engine [100

hours]

● Database: [200 hours]

18

○ Create a dataset that will be used to train the classification mode [125

hours]

○ Store the natural language statement, expected code translation pairs for

training the training dataset [45 hours]

○ Pass the training dataset to the Classification Engine [30 hours]

● Classification Engine: [200 hours]

○ Use a dataset to train the natural language statement to code translation

model [100 hours]

○ Be able to take a natural language statement from the UI as input and

convert it to a tokenization of the expected code [50 hours]

○ Pass the expected code tokenization to the translation engine [50 hours]

● Translation Engine: [75 hours]

○ Take the expected code tokenization from the classification engine and

translate to code [50 hours]

○ Pass the expected code translation to the UI [25 hours]

● Testing: [100 hours]

○ Write unit, GUI, and integrate tests [50 hours]

○ Run usability tests [20 hours]

○ Make improvements based on testing results [30 hours]

4.4 Other Resource Requirements

At this point, we envision requiring a dedicated server for training and use of our

classification model as this process is computationally demanding. We will update this list

as necessary throughout our development process.

4.5 Financial Requirements

This project does not provide or require any financial resources. All the required

resources will be provided to us as needed.

19

5. Testing and Implementation

5.1 Interface Specifications

The chosen IDE for this project was the IntelliJ IDEA. This interface should be a good way

to present our plugin to a user that is wanting to write code without using an actual

language such as Java. IntelliJ’s user interface is easy to become familiar with, but has

many advanced options for more adept users. An IntelliJ plugin will be needed to integrate

our software with the IDE.

As far as adding the interface to convert natural language to code with IntelliJ, there will

be two options for a user to do this. The first will be selecting natural language that the

user has typed directly into a file within IntelliJ and selecting our plugin to convert what

they have written into code. The second interface will be an option to input natural

language into a text box provided by the plugin, which when the user has finished, will

generate the desired program based on the natural language provided.

5.2 Hardware and Software

No hardware will be provided other than the laptops and computers will be using to

create the application plugin. For software we will be using IntelliJ IDEA, Eclipse, and

Visual Studio Code to develop the application. GitLab will be used for source control, and

keeping a clean code base. Trello will be used for project management and managing the

amount of work each member is contributing.

5.3 Functional Testing

As mentioned in the feasibility section of this design document the success rate of similar

projects is not high. However the functional tests requirements that we hope to see is that

given the same natural language, or slight variations, the application should return the

correct Java code with a 75% success rate. This is a high goal when compared with similar

projects in the field, so this number is susceptible to change in the future.

The goal is to create a large enough data set in the coming months to be able to provide

automated tests the data set and test the application throughout it’s stages of

development. This dataset should be wide enough to test the full functionality of the

20

application and to be able to quickly spot any bugs or potential issues with application as it

goes through its stages of production. The data set with be used to drive automated tests

and should provide a baseline of how the function will work.

5.4 Non-Functional Testing

In terms of non-functional requirements for the application we need to ensure that

functional requirements take precedence over these requirements. The first requirement

we would like to focus on is the appearance of the plugin application. The plugin should be

easy to use, and easy to access and should have great user interface that is fairly simple.

This user interface should be essentially designed for a user who is adept with a computer

but shouldn’t overwhelm them with information.

5.5 Process

The Process of creating our tests relies heavily on creating or finding our dataset. We will

need to find or create a variety of pseudocode phrases and examples that we can use to

test our application. This is the first step, the second step is to create automated tests that

take the dataset in and run the application with that input. Finally we need to compare the

results of the tests with the expected autoput and refactor our application to ensure a

higher success rate. Then the cycle repeats by adding more information to our dataset we

can repeat the process and achieve a better product.

5.6 Results

Currently no results as we are still researching how to create our dataset for the tests.

21

6. Closing Material

6.1 Conclusion

6.1.1 Development Progress

So far in the development of the Intelligent Code Editor we have done the following:

● Looked into existing tools related to NLP to code

○ Discovered openNMT, an open source neural machine translation system.

Used for research on various translations (image-to-text,

English-to-Spanish), it could be a good resource for our project.

● Completed a literature analysis on research related to NLP and NLP to code

● Worked on the development of the plugin

○ Made a basic plugin for VScode, IntelliJ, and Eclipse

○ Ultimately decided to develop the plugin for IntelliJ

○ Plugins for different IDE’s could be added later in development

6.1.2 Summary

The Goal for this project is to develop an application that assists the development of code

by using natural language processing to convert normal text/pseudocode into functional

code in an editor. To meet this end, we have settled on the following technologies:

● We will develop the plugin for IntelliJ. We settled on this due to IntelliJ’s large

amount of plugin documentation online, as well as it’s focus on Java, which we are

all familiar with.

● We will use OpenNMT.py to train a model for the NLP. OpenNMT.py is widely used

and well documented, as well as being quoted as “production ready” by some

companies, verifying its effectiveness.

6.2 References
[1] Code, V. (2019). ​plugin API​. [online] Code.visualstudio.com. Available at:
https://code.visualstudio.com/api [Accessed 24 Sep. 2019].
[2] Amsden, J. (2019). ​Your First Plug-In​. [online] Eclipse.org. Available at:
https://www.eclipse.org/articles/Article-Your%20First%20Plug-in/YourFirstPlugin.html [Accessed 30 Sep.
2019].
[3] JetBrains IntelliJ Platform SDK. (2019). ​Creating Your First Plugin​. [online] Available at:
http://www.jetbrains.org/intellij/sdk/docs/basics/getting_started.html [Accessed 30 Sep. 2019].

22

[4] Opennmt.net. (2019). ​Contents — OpenNMT-py documentation​. [online] Available at:
http://opennmt.net/OpenNMT-py/ [Accessed 24 Sep. 2019].
[5] Docs.mongodb.com. (2019). ​MongoDB Documentation​. [online] Available at:
https://docs.mongodb.com/ [Accessed 24 Sep. 2019].
[6] Lin, X., Wang, C., Pang, D., Vu, K., Zettlemoyer, L. and Ernst, M. (2019). ​Program Synthesis from
Natural Language Using Recurrent Neural Networks​. [online] Seattle, WA, USA: Paul G. Allen School of
Computer Science & Engineering. Available at:
https://homes.cs.washington.edu/~mernst/pubs/nl-command-tr170301.pdf [Accessed 24 Sep. 2019].
[7] Wu, Y., Schuster, M., Chen, Z., Le, Q. and Norouzi, M. (2016). ​Google’s Neural Machine Translation
System: Bridging the Gap between Human and Machine Translation​. [online] Google. Available at:
https://arxiv.org/pdf/1609.08144.pdf [Accessed 30 Sep. 2019].

6.3 Appendices

23

