

Intelligent Code Editor

Design Document

Revised November 3, 2019

sdmay20-46

Professor Ali Jannesari — Client & Adviser

Keaton Johnson — Systems Lead

Jonathan Novak — Machine Learning Lead

Matthew Orth — Meeting Facilitator

Garet Phelps — Report Manager

Isaac Spanier — Test Lead

John Jago — Software Lead

Team Email​: sdmay20-46@iastate.edu

Team Website​: https://sdmay20-46.sd.ece.iastate.edu

Executive Summary

Development Standards & Practices Used

Our work on the Intelligent Code Editor followed standard industry practices in software

development. We followed agile practices with sprints lasting two weeks at the beginning;

we switched to one week sprints as we became more familiar with the project and met

more regularly. For the IntelliJ plugin, we practiced test-driven development (TDD). In the

software industry, engineering standards typically measure how well the software is

tested, how well any manual processes are automated, and the quality of the software

through the number of bugs or defects discovered. We will also follow these measures.

There are a couple specific IEEE standards that our team will informally adopt to assist in

developing a quality product. The first is IEEE 1028-2008, which concerns software

reviews and audits. Our technical reviews occur on GitLab whenever a merge request is

submitted. Another is IEEE 16326-2009, which outlines the project management aspect

of software development. This standard is implemented in the form of this design

document. Additionally, IEEE 1008-1987 during the test planning and test

implementation stages.

Summary of Requirements

The user will enter their natural language statement into the IDE. The natural language

statement will be passed to a neural machine translation back-end system that will

convert the natural language to equivalent Java code that will be displayed and

executable by the user. A dataset will be created to train the neural machine translation

model. This functionality will be developed in an Integrated Development Environment

(IDE) or text editor to convert natural language (English) into Java code. Further

optimizations will be made to the system in terms of learning method and translation

accuracy.

Applicable Courses from Iowa State University Curriculum

● COM S 227 (Introduction to Object-Oriented Programming)

● COM S 228 (Data Structures)

● COM S 309 (Software Project Management)

1

● COM S 319 (User Interfaces)

● COM S 472 (Artificial Intelligence)

● COM S 474 (Machine Learning)

● E E 526X (Deep Learning)

New skills/knowledge acquired that was not taught in courses

● Natural Language Processing

● Dataset Creation

● IDE plugin development

2

Table of Contents

Executive Summary 1

Development Standards & Practices Used 1

Summary of Requirements 1

Applicable Courses from Iowa State University Curriculum 1

New skills/knowledge acquired that was not taught in courses 1

Table of Contents 3

1. Introduction 5

1.1 Acknowledgement 5

1.2 Project and Problem Statement 5

1.2.1 Problem Statement 5

1.2.2 Solution Approach 5

1.3 Operational Environment 6

1.4 Requirements 6

1.4.1 Functional Requirements 6

1.4.2 Non-Functional Requirements 6

1.4.3 UI Requirements 6

1.5 Intended Users and Uses 6

1.6 Assumptions and Limitations 7

1.6.1 Assumptions 7

1.6.2 Limitations 7

1.7 Expected End Project and Deliverables 7

2. Specifications and Analysis 9

2.1 Proposed Design 9

2.2 Design Analysis 9

2.3 Development Process 10

2.4 Design Plan 10

3. Statement of Work 13

3.1 Previous Work and Literature 13

3.2 Technology Considerations 14

3.3 Task Decomposition 14

3.4 Possible Risks and Risk Management 15

3

3.5 Project Proposed Milestones and Evaluation Criteria 16

3.6 Project Tracking Procedures 17

3.7 Expected Results and Validation 17

4. Project Timeline, Estimated Resources, and Challenges 18

4.1 Project Timeline 18

4.2 Feasibility Assessment 19

4.3 Personnel Effort Requirements 19

4.4 Other Resource Requirements 20

4.5 Financial Requirements 21

5. Testing and Implementation 22

5.1 Interface Specifications 22

5.2 Hardware and Software 22

5.3 Functional Testing 22

5.4 Non-Functional Testing 23

5.5 Process 23

5.6 Results 23

6. Closing Material 28

6.1 Conclusion 28

6.1.1 Development Progress 28

6.1.2 Summary 28

6.2 References 29

6.3 Appendices 30

4

1. Introduction

1.1 Acknowledgement

We would like to thank Professor Ali Jannesari for his guidance on this project not only as

the primary client but also as the faculty advisor. We would also like to thank Hung Phan

for sharing his knowledge and for his involvement.

1.2 Project and Problem Statement

1.2.1 Problem Statement

With software becoming more prevalent in fields where it previously did not exist, more

people must learn how to write programs to accomplish their work. One example is

bioinformatics. At Iowa State, COM S 444: Bioinformatic Analysis is cross-listed with

Biology and Genetics, among other majors. Students in these majors do not necessarily

have to become top programmers to do their work, but their work involves programming

nonetheless. A lack of experience in programming can become an unnecessary hindrance

to getting their work done, especially when trying to figure out the syntax of a

programming language.

1.2.2 Solution Approach

Our goal is to provide a method for users to type what they want to accomplish in natural

language and convert that natural language to the software code. This would allow

someone who doesn’t know how to write a particular statement in a programming

language to type an approximation of that statement in English and have the editor

convert the English to executable code.

The primary deliverable is a plugin to an existing integrated development environment

(IDE) or text editor through which the user will interact with to translate the natural

language to code. Behind the scenes will be a classification/translation engine that

handles the actual conversion of English to code using a trained model. Also produced will

be a dataset of possible natural language inputs that someone might type and the

expected code translations, which will allow us to train our model and test the accuracy of

our final product.

5

1.3 Operational Environment

The IDE plugin along with the other software components will reside on computers and

possibly remote servers. One major risk is that malicious software might be able to read

data from our services. While we are not storing personal information, is it possible that

people might not want their English (or the resulting code) exposed, as this could leak

enough information for an attack on the program that the user is writing or release of

confidential information. Therefore, we will take into consideration the security of our

software, especially if it communicates over a network.

1.4 Requirements

1.4.1 Functional Requirements

● User can select or otherwise input the text they wish to translate to code

● User can trigger a translate action

● The textual descriptions are replaced by the translated code fragments

● The translated code fragments can be executed as regular code

● Multiple selections can be translated at the same time

1.4.2 Non-Functional Requirements

● Translation time should be fast so it does not slow down the user’s development

pace

● The model should learn using an unsupervised method

1.4.3 UI Requirements

● Translation action should be easily accessible from the text editor area

● The user interface should be clean and easy to understand

1.5 Intended Users and Uses

Users and their uses of this product:

● Someone who does not explicitly write code for their job, but needs to utilize

programming for certain aspects and does not want to spend a large amount of

time learning to code.

● A developer who is not intimately familiar with a particular language they would

like to use, but can express the concepts they want in natural language or

pseudo-code.

● Integration with speech-to-text technology to allow programming by dictation.

6

1.6 Assumptions and Limitations

1.6.1 Assumptions

● The user will enter their natural language statements in the general format we

expect

● The user will enter their natural language statement in the location in the editor

they want the translated code inserted

● The user will enter only natural language statements supported by the system’s

dataset

1.6.2 Limitations

● Translations will only be supported for common code syntax, methods, and classes.

● The translation may not generate the proper translation on the first attempt or at

all for certain inputs

● Translation will not occur for natural language statements not represented in the

dataset

● Translations are only supported from English to Java source code

1.7 Expected End Project and Deliverables

User Interface (November 2019):

The user interface (UI) will present the user with an Intelligent Development Environment

(IDE) text editor where the user can enter their natural language statements representing

the program they want to translate to code. The user interface will also allow the user to

interact with the system to translate their natural language statements to equivalent

code. Once the translate button is interacted with, the natural language statement will be

passed to the classification/translation engine. The UI will then accept the translated code

from the Translation Engine and display it in the editor at the location where the original

natural language statement is.

Classification and Translation Engine (December 2019):

7

The classification engine will be trained from a dataset of natural language, expected code

translation pairs. This model (along with the natural language statement from the UI) will

be passed to the translation engine. The model will then use the input to produce an

output of the expected code translation. Finally, the translation engine will pass the

expected translation to the UI.

Dataset (February 2020):

The dataset will contain the natural language statement, expected code translation pairs.

This dataset will contain a source (natural language statements) and target (expected

code translation) files for training, validation, and testing. Experimentation will be done on

the effectiveness between manually and automatically creating a dataset as well as using

already created datasets. The dataset will be created locally and will be stored on the

translation server.

Model and Dataset Optimization and Self-Learning (March 2020):

Throughout the development process, the training model (architecture and

hyperparameters) and dataset will be optimized to achieve the best performance. The

performance will be measured through neural machine translation metrics, research, and

observed translation results. In addition, we will configure the classification and

translation model to be unsupervised and self-learning. This will allow the system to learn

from the input the user provides instead of labeled data from a dataset, creating a better

performing system over time.

Final Product (April 2020):

The final Intelligent Code Editor project will connect the User Interface, Dataset, and

Classification/Translation Engine. This will create a complete end-to-end translation

system.

8

2. Specifications and Analysis

2.1 Proposed Design

User Interface (UI):

An IntelliJ plugin will be created for the user interface. This plugin will present the user
with an IDE text/code editor where they can enter their natural language statements. It
will also give the user the ability to translate the natural language statement to code
through some interaction button. The plugin will additionally connect to the classification
and translation engine, passing the natural language statement and receiving and
displaying the expected code translation. Finally, the translated code will be executable by
the user.

Classification and Translation Engine:

The Classification and Translation engine will be implemented using OpenNMT-py. The
OpenNMT-py model will be trained using a dataset containing natural language
statement, expected code translation pairs. Future plans will allow OpenNMT-py to
support unsupervised learning on the input specified by the user. The natural language
statement from the UI will be input and the engine will output the expected translated
code to the UI.

Dataset:

The dataset will contain the natural language statement, expected code translation pairs.

This dataset will contain a source (natural language statements) and target (expected

code translation) files for training, validation, and testing. Experimentation will be done on

the effectiveness between manually and automatically creating a dataset as well as using

already created datasets. In addition, the dataset will contain research on synonyms,

sentence permutations, and various English dialects. The dataset will be created locally

and will be stored on the translation server.

2.2 Design Analysis

Strengths:

For the user interface, documentation for creating an IntelliJ plugin is significant and
there is a large community for it. An IntelliJ plugin is also easy to install and use in the
IntelliJ editor, making it easier and more likely for a user to utilize.

9

OpenNMT-py is a well-documented and widely used Neural Machine Translation engine
that will convert the natural language statement to the expected code. One major
strength of OpenNMT-py is that it comes with training model templates, resembling
modern techniques for neural machine translation. This simplifies the process of creating
a model from scratch as that is something that requires a significant amount of experience
and original research.

Weaknesses:

When creating an IntelliJ plugin, it does not allow the user to modify everything about the
code editor, so we will have to ensure that we can modify what is necessary for our
requirements.

Some weaknesses of using OpenNMT-py are the models take a long time to train.
However, this would be a problem regardless of the system we chose to implement it with.
We will also need to determine how to create a representative dataset that will allow us
to effectively train the model. Allowing OpenNMT-py to support unsupervised learning
will help with this issue, but this could take a long time to produce.

2.3 Development Process

Our team is following the Agile Development Process. Our team will have weekly
meetings where we will review our project progress, update our task board, and plan
future work. Bi-weekly meetings will be held where demos of our progress will be shown
and feedback will be received to further improve our design. These meetings will ensure
there is clear communication between our group and our client. Testing our design
throughout the design process will also be incorporated to validate our design. This means
that our requirements will be continuously changing and improved throughout the
development process.

2.4 Design Plan

The below diagram shows our design plan:

10

User Interface:

The user will first enter their natural language statement into the code editor. Then after

the user clicks the translate button, the User Interface will pass the natural language

statement to the translation engine. The user (or developer) will also pass the natural

language statement, expected code translation pairs to the dataset. The user interface

implements many of the functional requirements.

Dataset:

The Dataset will store the natural language statement and expected code translation in

the respective source (natural language) and target (expected code translation) files that

are split into training, validation, and test sets. These dataset files will then be passed to

the Classification Engine for training.

Classification Engine:

11

The Classification Engine will train the model on the provided dataset, using the natural

language statement as the input and the expected code translation as the output. After

training has been completed, the model will calculate translation metrics on the testing

dataset to determine effectiveness of results. The Classification Engine will then pass the

trained model to the translation engine to use for translation.

Translation Engine:

The Translation Engine will take the trained model from the Classification Engine and the

input from the User Interface to generate the expected code translation. This expected

code translation will be passed to the user interface for display. Eventually, the translation

engine will also support unsupervised learning on the natural language input provided by

the user interface. The dataset, classification, and translation engine satisfy many of the

non-functional requirements.

12

3. Statement of Work

3.1 Previous Work and Literature

User Interface:

Our research for the user interface started with the IntelliJ plugin API documentation [3].

Here we found useful information about what functionality was available for creating a

custom IntelliJ plugin. We also utilized various documentation resources for creating an

Eclipse Plugin [2] and Visual Studio Code Extension [1]; however, we did not find as many

documentation resources and a large community for these plugins. This led us to choose

an IntelliJ plugin.

Classification/Translation Engine:

We read many different research papers to determine methods to implement neural

machine translation. From these papers, we determined that modern Neural Machine

Translation mechanisms like the Transformer model are some of the best performing

models [7]. With this information, we researched tools that can execute this kind of neural

machine translation. We then found OpenNMT-py [4], which has easy interaction with

modern neural machine translation models as we were able to train a basic model for

language translation within a couple of hours.

Current systems that translate the natural language to code require structured input from

the user [6]. Our system will aim to allow the user to enter more unstructured natural

language statements and convert that to equivalent code. This will allow more individuals

to use our system. Additionally, current systems require a supervised learning method

while our system will aim to allow our model to be trained in an unsupervised manner.

Dataset:

The dataset will be modeled in the way OpenNMT-py expects: a source (natural language

statements) and target (expected code translation) files for training, validation, and

testing.

13

3.2 Technology Considerations

Strengths:

For the user interface, documentation for creating an IntelliJ plugin is abundant and there
is a large community for it. An IntelliJ plugin is also easy to install and use in the IntelliJ
editor, making is something a user would more likely use.

OpenNMT-py is a well-documented and widely used Neural Machine Translation engine
that will convert our natural language statement to the expected code. One major
strength of OpenNMT-py is that it comes with training model templates resembling
modern techniques for neural machine translation while also giving more customization
options. This means we could use a model like the Transformer model without having to
configure this ourselves. This will simplify the process of creating a model from scratch as
that is something that requires a significant more amount of experience and original
research with Machine Learning and Natural Language Processing.

Weaknesses:

When creating an IntelliJ plugin, it does not allow the user to modify everything about the
code editor, so we will have to ensure that we can modify what is necessary. This can be
solved by either modifying our features or determining other mechanisms aside from
IntelliJ plugins to implement those features.

Some weaknesses of using OpenNMT-py are the models take a long time to train.
However, this would be a problem regardless of the system we chose to implement it with.
This can be solved by requesting more powerful computers or servers to execute the
training and classification of the model. Creating a representative dataset to effectively
train the model will also be a challenge. This could take a long time to produce, but the
process can be simplified by either utilizing already created datasets or determining other
ways to automatically create the dataset. Allowing OpenNMT-py to support unsupervised
learning will also improve this process. Additionally, OpenNMT-py does not support all
neural machine translation architectures.

3.3 Task Decomposition

The following project tasks are based on our initial research into the project and may

change.

● Research:

○ Research and test tools for creating IDE plugin/extension

○ Research tools for natural language to code translation

14

○ Research tools for creating a dataset

● User Interface (IntelliJ plugin):

○ Modify the IntelliJ IDE to allow the user to enter both natural language

statements and code

○ Create a mechanism that allows the user to translate the natural language

statement to code

○ Connect the UI to the Dataset, Classification, and Translation Engine

● Dataset:

○ Research word synonyms, word permutations, and English dialects

○ Create or find a dataset that will be used to train the classification model

○ Store the natural language statement, expected code translation pairs for

the source and target training, validation, and testing dataset

○ Optimize the dataset for best performance

○ Pass the training dataset to the Classification Engine

● Classification Engine:

○ Use a dataset to train the natural language statement to expected code

translation model

○ Optimize the model architecture and hyperparameters for best

performance

○ Pass the trained model to the Translation Engine

● Translation Engine:

○ Take as input the trained model from the Classification Engine and the

natural language input from the User Interface

○ Enable the translation engine to support unsupervised learning based on

the input provided by the user interface

○ Pass the expected code translation to the UI

● Testing:

○ Write unit, GUI, and integration tests

○ Run usability tests

○ Make improvements based on testing results

3.4 Possible Risks and Risk Management

A potential risk is a lack of knowledge in natural language processing. This starts with

creating a large and representative enough dataset for training the classification model.

15

Usually, datasets require thousands of entries, which could take a long time to create. For

this, we may need to determine an automated way of creating the dataset or using an

already generated dataset.

Once we have our dataset, training the classification model is a lengthy process, requiring

powerful computing. We will need a dedicated computer or server for this purpose.

Finally, once the model is trained, the accuracy of the translation may be an issue. Even

modern neural machine translation systems are unlikely to correctly translate the natural

language to code accurately [6]. We may need to give possible translation options to the

user or require the user to enter more structured queries to compensate.

3.5 Project Proposed Milestones and Evaluation Criteria

The first milestone for the project will be researching and determining which user

interface (UI), dataset, and classification/translation engine tools we want to use and

create. This will uncover the initial direction of the project.

After the UI, dataset, and classification/translation tools are selected, the next milestone

will be creating simple demos of using the UI, Dataset, and Classification/Translation

engine for our purpose in isolation. This will involve giving fake data to these systems to

ensure they behave correctly in isolation. The UI should allow the user to enter natural

language statements and be able to convert them to code using a fake back-end system.

The classification/translation engine should take a pre-made dataset containing natural

language statements and equivalent code to train and test the model. The model

translations should have about 50% accuracy.

After everything is working in isolation, the next milestone will be to connect everything

to ensure the system works end-to-end. This means the user will provide the natural

language statement to the editor and the translation engine will provide the UI with the

expected translated code to display.

Major milestones after this will involve improving the dataset and

classification/translation engine to translate more complicated natural language

statements (methods, classes, algorithms, etc.). Additional work will be done to allow the

classification/translation engine to support unsupervised learning based on the input

16

provided by the user. This will likely require improving our training model with an updated

dataset. Once completed, the classification/translation engine will meet our accuracy

requirements and support self-learning when a user enters a natural language statement

through the system.

The final milestone for the project will involve testing and verification of the design. This

will involve writing tests and running usability tests to ensure our design works as

expected. Successful completion will have all required functionality tested, verified, and

accepted.

3.6 Project Tracking Procedures

Our group will utilize GitLab, Trello, and GroupMe to track our progress throughout the

semester. GitLab will be used to manage our project code. Each team member will develop

in their individual branch and merge that into the master branch when ready. One

member will be in charge of merging the branches together.

Trello will be used to manage task creation and assignment. Each task will have a title,

description, assigned member, and due date. There will be a backlog, doing, done, and

completed column. These will represent tasks yet to be assigned, currently being worked

on, done, and verified respectively. It is expected each member accomplishes their tasks

assigned for each sprint.

GroupMe will be utilized for immediate communication with the team. Here, we will

communicate meeting times, quick questions, and other communication.

3.7 Expected Results and Validation

Our desired outcome is to create an end-to-end system where the user can enter a natural

language statement into the code editor and the system will be able to translate the

statement to equivalent code that will be displayed and be executable by the user in the

editor.

Our implementation will be validated by creating unit and GUI tests and through usability

tests. This will ensure that our system behaves as expected and is easily usable by the

17

users. This testing and usability tests will be developed throughout the development

process to ensure we are creating an optimal solution.

In addition, our training model and dataset’s performance will be validated using neural

machine translation performance measures, research, and observation of translation.

18

4. Project Timeline, Estimated Resources, and
Challenges

4.1 Project Timeline

Key:

● UI = User Interface

● GUI = Graphical User Interface

The first major stage of the project will be to conduct the initial research of the UI,

dataset, and classification/translation engine tools we want to use.

The second major stage involves setting up and creating the basic functionality for the UI,

dataset, and classification/translation engine. For the UI, the natural language input and

translation interaction will be configured. Finally, the classification/translation engine will

be configured, trained on a basic dataset, and set up as a server.

Connectivity between the UI, dataset, and classification/translation engine will be the

next major task. This task will involve connecting the UI to the dataset and classification

engine, the dataset to the classification/translation engine, and the

classification/translation engine to the UI. We will then ensure that we can correctly send

information between these systems.

The final stage will involve optimizing, testing, and validating our results. This will start

with fine-tuning the dataset and classification/translation engine for the best results. We

will also enable OpenNMT-py to support unsupervised learning based on the input

19

provided by the user. Then we will continue writing the automated tests, end-to-end tests,

and user validation testing. Finally, we will take the feedback from those tests to improve

our final design.

4.2 Feasibility Assessment

The end-to-end natural language to code translation system explained above is very

ambitious. Current systems struggle obtaining high accuracies for this purpose. Because

of this, a more reasonable solution to this project may be to have the user enter more

structured statements that the classification model can more easily learn from.

Additionally, implementing the model learning method as unsupervised learning could

help the system learn as more data is entered by the user.

Implementing the learning method as unsupervised learning is also a significant challenge

as current neural machine translation systems utilize supervised learning. Research and

learning will be done by our team to determine the method and ability to implement this

feature.

Another challenge will be creating a large and representative enough dataset that will

allow the trained model to be more accurate. As a result, our system may need to

compensate by requiring the user to reenter their statement or give the user suggestions

for translations. Additionally, we may need to utilize already made datasets or determine

an automatic method for dataset generation. However, these restrictions and feasibility

assessments will be more accurate as we progress more in the project.

4.3 Personnel Effort Requirements

These are very rough time estimates, and they will be updated to more accurate values

once we begin the implementation phase of the project.

● Research: ​[75 hours]

○ Research and test tools for creating IDE plugin/extension ​[25 hours]

○ Research tools for natural language to code translation ​[25 hours]

○ Research tools for creating a dataset ​[25 hours]

● User Interface (IntelliJ plugin): ​[25 hours]

○ Modify the IntelliJ IDE to allow the user to enter both natural language

statements and code ​[10 hours]

20

○ Create a mechanism that allows the user to translate the natural language

statement to code ​[10 hours]

○ Connect the UI to the Dataset, Classification, and Translation Engine ​[5

hours]

● Dataset: ​[175 hours]

○ Research word synonyms, word permutations, and different English dialects

[25 hours]

○ Create or find a dataset that will be used to train the classification model

[100 hours]

○ Store the natural language statement, expected code translation pairs for

the source and target training, validation, and testing dataset ​[20 hours]

○ Optimize the dataset for best performance ​[25 hours]

○ Pass the training dataset to the Classification Engine ​[5 hours]

● Classification Engine: ​[80 hours]

○ Use a dataset to train the natural language statement to expected code

translation model ​[25 hours]

○ Optimize the model architecture and hyperparameters for best

performance ​[50 hours]

○ Pass the trained model to the Translation Engine ​[5 hours]

● Translation Engine: ​[115 hours]

○ Take as input the trained model from the Classification Engine and the

natural language input from the User Interface ​[5 hours]

○ Enable the translation engine to support unsupervised learning based on

the input provided by the user interface​ [100 hours]

○ Pass the expected code translation to the UI ​[10 hours]

● Testing: ​[100 hours]

○ Write unit, GUI, and integration tests ​[25 hours]

○ Run usability tests ​[25 hours]

○ Make improvements based on testing results ​[50 hours]

4.4 Other Resource Requirements

A dedicated GPU server is required and provided to train our classification model on the

dataset. Our group has been given access to the Pronto GPU server at Iowa State

University [8]. This server is a shared computing resource that allows access to powerful

21

computing resources, including multiple GPUs. This will speed up our training and

development process as well as allow us to train models with more complex architectures.

Additionally, a dedicated server will be provided to run our classification/translation

engine’s REST server. This server will connect with the front-end to allow data to be sent

from the user interface to the classification/translation server.

4.5 Financial Requirements

This project does not provide or require any financial resources. All the required

resources will be provided to us as needed.

22

5. Testing and Implementation

5.1 Interface Specifications

The chosen IDE for this project is an IntelliJ plugin. This interface is a good way to present

our plugin to a user that is wanting to write code without using an actual programming

language such as Java. IntelliJ’s user interface is easy to become familiar with but has

many advanced options for more adept users. An IntelliJ plugin will be needed to integrate

our software with the IDE.

For adding an interface to convert the natural language to code with IntelliJ, the user will

select the natural language they typed directly into a file within IntelliJ and select our

plugin to convert what they have written into code. This process will interface with the

end-to-end system that consists of the dataset and classification/translation REST engine,

which is contained on the dedicated server.

5.2 Hardware and Software

For hardware, the Pronto shared computing resource and personal computers will be

used to train and test the classification model and create the user interface. The dedicated

server will be used to run the classification/translation server on.

For software, an IntelliJ plugin is used for the user interface. OpenNMT-py will be used to

implement the classification/translation server. GitLab will be used for source control and

keeping a clean codebase. Trello will be used for project management and managing the

amount of work each member is contributing.

5.3 Functional Testing

For Functional Testing of our project, we want to provide a natural language to Java

language translation. So far, we have focused on the Java print statements and Java

functions. In addition, we will write automated unit, GUI, and integration tests for the user

interface and integrated system. This will ensure that our system meets our specified

requirements and behaves correctly as an end-to-end system.. These tests will be written

throughout the development process to catch bugs early.

23

5.4 Non-Functional Testing

As mentioned in the feasibility section of this design document, the success rate of similar

projects is not high. Our application aims to return the correct and executable Java code

with a 30-50% success rate. This is a high goal when compared with similar projects in the

field, so this number is susceptible to change in the future. Most of the current systems

obtain around a 25%-30% success rate.

In terms of other non-functional requirements for the application, the first requirement

we would like to focus on is the appearance of the plugin application. The plugin should be

easy to use, and easy to access and should have a user interface that is fairly simple and

fast. This user interface should be essentially designed for a user who is adept with a

computer but shouldn’t overwhelm them with information. Usability tests will be

executed for these.

5.5 Process

Unit, GUI, and integration tests will be written throughout the development process to

mainly test the functionality of the user interface and the end-to-end system. This will

ensure that we catch bugs or missed requirements early. During the development of our

dataset and classification/translation engine, we will test the effectiveness of our dataset

and classification/translation engine architecture and hyperparameters. This will be done

by running our dataset through our designed neural machine translation architecture and

observing the results according to research and neural machine translation metrics such a

BLEU and calculating the translation accuracy. Modifications to our system will be made

where unexpected results are observed. This cycle will continue until we achieve all

requirements and achieve accurate translation results.

5.6 Results

Dataset Creation:

First, we generated a simple Java print statement dataset that contained different ways to

say print with some different values to print. The translated results can be seen below:

24

We observed that System.out.println(“”); was being correctly generated for each entry;

however, the value that was supposed to be printed was not. From this testing, we learned

that the default OpenNMT-py configuration can correctly translate common code (in this

case the Java print statement).

We then created a more targeted Java print statement dataset consisting of “print

number” where number represents all numbers from 1 to 100,000 written in words and in

numerical representation. After running this new dataset through our translation model,

we achieved the following results:

We could see that the model is now populating the print statement with values; however,

these values were not correct (they were supposed to be numbers 1-10). After observing

these results, we started experimenting with the OpenNMT-py network architecture and

hyperparameters.

OpenNMT-py Configuration:

25

First, we tried using the Transformer architecture. Passing the same dataset through, we

achieved the following results:

For some reason, the results achieved were worse than the basic network architecture.

This could have been due to the Transformer model requiring many GPU resources, so we

have to scale down some of the parameters.

Next, we tried using an RNN network architecture. After running the same dataset

through the RNN architecture, we achieved the following results:

These results are exactly what we expect. From this experiment, we learned that values

that are contained within the training dataset have a high probability of being translated

correctly during testing.

Complex Dataset:

After confirming our results using a basic dataset, we then tested our results on more

complex datasets. The first dataset we tried was the Python Parallel Code Corpora [9].

26

This dataset consisted of automatically generated natural language to code translations

generated from Stack Overflow. After running this dataset through OpenNMT-py, we

achieved the following results:

The results achieved for this dataset are not ideal. It did pull out common syntax (DCSP

and return), but the results were not accurate. This is likely due to the natural language

statements and expected code translation being very complex (many lines with not

common syntax).

We then began researching other datasets when we found the Conala dataset [10]. This

dataset again was created using automated mining methods from Stack Overflow.

However, this dataset also contained manually generated data points that the automatic

generation system used when mining. After running this dataset through our system with

the Transformer architecture on more powerful GPU resources, we achieved the

following results:

We observed that the results resembled their expected code much more closely. This led

us to determine how we can create a more accurate dataset that would achieve greater

performance or how we can update our network architecture to achieve better results on

the Conala dataset.

27

Next, we generated a dataset targeting the Java print statement. Our dataset contained

various hardcoded strings, arithmetic, variables, and function calls. After running the

dataset through our system, we received the following results and metrics:

Accuracy = 40%

We observed that the arithmetic statements were translated correctly almost all the time,

but string values were not. Additionally, variables and function calls had an accurate

translation. These results led us to create a dataset that supports more generalized

natural language inputs.

28

6. Closing Material

6.1 Conclusion

6.1.1 Development Progress

So far in the development of the Intelligent Code Editor, we have done the following:

● Looked into existing tools related to NLP to code

○ Discovered OpenNMT, an open-source neural machine translation system.

Used for research on various translations (image-to-text,

English-to-Spanish[4].

● Completed a literature analysis on research related to NLP (natural language

processing) and NLP to code

● Worked on the development of the plugin

○ Made a basic plugin for VScode, IntelliJ, and Eclipse

○ Ultimately decided to develop the plugin for IntelliJ

○ Plugins for different IDE’s could be added later in development

● Created a basic IntelliJ plugin:

○ Allows the user to enter and select natural language in the code editor

○ Passes the entered natural language statement to the translation engine

○ Receives the expected code translation back from the translation engine

● OpenNMT-py Configuration:

○ Configured OpenNMT-py on the Pronto GPU server

○ Determined how to run a dataset through the classification engine

○ Determine how to adjust network architecture and hyperparameters

○ Researched and tested different datasets, architectures, and

hyperparameters

● Dataset Creation:

○ Created a Java print statement dataset to use as a baseline for our

translation results

29

6.1.2 Summary

The goal for this project is to develop an application that assists the development of code

by using natural language processing to convert normal text/pseudocode into functional

code in an editor. To meet this end, we have settled on the following technologies:

● We will develop the plugin for IntelliJ for the user interface. We settled on this due

to IntelliJ’s large amount of plugin documentation online, as well as its focus is on

Java, which we are all familiar with.

● We will use OpenNMT-py to train a model for the translation. OpenNMT.py is

widely used and well documented, as well as being quoted as “production-ready”

by some companies, verifying its effectiveness.

We now have three main deliverables that we will be working on:

● The baseline for the IntelliJ project is done. From here improvements will be made

in gathering context from the surrounding code to make the sent data easier for

the OpenNMT-py to interpret.

● The OpenNMT-py will continue to be optimized to better translate our natural

language.

● A Java dataset is being continuously developed that the model will be trained on.

Right now we are only working on the println method.

6.2 References

[1] Code, V. (2019). ​Extension API​. [online] Code.visualstudio.com. Available at:
https://code.visualstudio.com/api [Accessed 24 Sep. 2019].
[2] Amsden, J. (2019). ​Your First Plug-In​. [online] Eclipse.org. Available at:
https://www.eclipse.org/articles/Article-Your%20First%20Plug-in/YourFirstPlugin.html [Accessed
30 Sep. 2019].
[3] JetBrains IntelliJ Platform SDK. (2019). ​Creating Your First Plugin​. [online] Available at:
http://www.jetbrains.org/intellij/sdk/docs/basics/getting_started.html [Accessed 30 Sep. 2019].
[4] Opennmt.net. (2019). ​Contents — OpenNMT-py documentation​. [online] Available at:
http://opennmt.net/OpenNMT-py/ [Accessed 24 Sep. 2019].
[5] Docs.mongodb.com. (2019). ​MongoDB Documentation​. [online] Available at:
https://docs.mongodb.com/ [Accessed 24 Sep. 2019].
[6] Lin, X., Wang, C., Pang, D., Vu, K., Zettlemoyer, L. and Ernst, M. (2019). ​Program Synthesis
from Natural Language Using Recurrent Neural Networks​. [online] Seattle, WA, USA: Paul G.
Allen School of Computer Science & Engineering. Available at:

30

https://homes.cs.washington.edu/~mernst/pubs/nl-command-tr170301.pdf [Accessed 24 Sep.
2019].
[7] Wu, Y., Schuster, M., Chen, Z., Le, Q. and Norouzi, M. (2016). ​Google’s Neural Machine
Translation System: Bridging the Gap between Human and Machine Translation​. [online]
Google. Available at: https://arxiv.org/pdf/1609.08144.pdf [Accessed 30 Sep. 2019].
[8] Researchit.las.iastate.edu. (2019). ​Pronto Job Manager | ResearchIT​. [online] Available at:
https://researchit.las.iastate.edu/pronto [Accessed 24 Oct. 2019].
[9] Valerio, A., Barone, M. and Sennrich, R. (2017). A parallel corpus of Python functions and
documentation strings for automated code documentation and code generation. [online]
Available at: https://arxiv.org/pdf/1707.02275.pdf [Accessed 24 Oct. 2019].
[10] Yin, P., Deng, B., Chen, E., Vasilescu, B. and Neubig, G. (2018). Learning to Mine Aligned
Code and Natural Language Pairs from Stack Overflow. [online] Available at:
https://arxiv.org/pdf/1805.08949.pdf [Accessed 24 Oct. 2019].

6.3 Appendices

We do not have any appendices at this time.

31

