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Motivation

● Problem: Programming is now used in fields like statistics, but people in those 
fields don’t need to know exact syntax of programming languages

● Solution: Neural machine translation model trained on Java method 
invocations (and an IDE plugin for the user)

● Intended uses: Translate English descriptions of Java method invocations
● Engineering Standards and Design Practices: IEEE 1028-2008, IEEE 

16326-2009, IEEE 1008-1987, Agile Workflow, Test Driven Development

Design Requirements
● Functional
○ User selects or otherwise inputs the text they wish to translate
○ User triggers the translate action
○ User’s English statement is replaced by the translated code fragment
○ The translated code fragment can be executed

● Non-functional
○ Translation time should be fast such that it does not slow down the 

development pace
● Operating environment
○ Java programmer using IntelliJ IDEA who doesn’t know all Java syntax and 

does not need to learn it

Design Approach
● User Interface
○ Upon triggering translation, convert method parameters to their types
○ Preprocess raw English and send to translation engine
○ Displays the top expected Java code translation, most probable to least

● Preprocessing
○ Use NLTK to convert original statement into “verb-noun” format, present 

tense, and lowercase
● Dataset
○ One  file for the natural language statements (in “verb-noun“ format with 

parameters converted to types)
○ One  file for corresponding  Java code translations

● Classification engine
○ Train a model using the dataset
○ Transformer model architecture

● Translation engine
○ Run preprocessed user input through trained model
○ Returns top expected code translations to the user interface

Technical Details
● IntelliJ Platform SDK for creating the plugin
● Natural Language Toolkit (NLTK) for preprocessing the input natural 

language statement into “verb-noun” format
● OpenNMT-py for implementing the translation from natural language 

to Java code
● AWS S3 Bucket, EC2  and Lambda servers for hosting translations
● Programming languages

■ Java: IntelliJ plugin, dataset preprocessing for mined Java code
■ Python: Preprocessing and classification/translation engine
■ C#: Dataset mining with Octokit

Testing
Unit: IntelliJ plugin (JUnit 5)
System: End-to-end translation
Acceptance: User experience

Translation Results
Accuracy: 50-60%
BLEU: 30-40


