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1. Introduction 

1.1 Acknowledgement 

We would like to thank Professor Ali Jannesari for his guidance on this project not only as 

the primary client but also as the faculty advisor. We would also like to thank PhD student 

Hung Phan for sharing his knowledge and for his involvement. 

1.2 Project and Problem Statement 

1.2.1 Problem Statement 

With software becoming more prevalent in fields where it previously did not exist, more 

people must learn how to write programs to accomplish their work. One example is 

bioinformatics. At Iowa State, COM S 444: Bioinformatic Analysis is cross-listed with 

Biology and Genetics, among other majors. Students in these majors do not necessarily 

have to become top programmers to do their work, but their work involves programming 

nonetheless. A lack of experience in programming can become an unnecessary hindrance 

to getting their work done, especially when trying to figure out the syntax of a 

programming language. 

1.2.2 Solution Approach 

Our project provides the foundation of a system for users to type what they want to 

accomplish in natural language and convert that natural language to the software code. 

Our foundational system focuses only on translating natural language statements to Java 

method invocations. Future systems will expand this functionality to other programming 

constructs and languages. This would allow someone who doesn’t know how to write a 

particular statement in a programming language to type an approximation of that 

statement in English and have the editor convert the English to executable code. 
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The primary deliverable is a plugin to an existing integrated development environment 

(IDE) or text editor, which the user will interact with to translate the natural language to 

code. Behind the scenes is some preprocessing and a classification/translation engine that 

handles the actual conversion of English to code using a trained model. Also produced is a 

dataset of possible natural language inputs that someone might type and the expected 

code translations using automatic code mining methods, which allows us to train our 

model and test the accuracy of our final product. Our solution is tailored towards users 

who have some programming knowledge and will support simple Java method 

invocations.  

1.3 Operational Environment 

The IDE plugin along with the other software components resides on computers and 

remote servers. One major risk is that malicious software might be able to read data from 

our services. While we are not storing personal information, is it possible that people 

might not want their English (or the resulting code) exposed, as this could leak enough 

information for an attack on the program that the user is writing or release of confidential 

information. Therefore, considerations to the security of our software, especially if it 

communicates over a network, were taken. 

1.4 Requirements 

1.4.1 Functional Requirements 

● User can select or otherwise input the text they wish to translate to code 

● User can trigger a translate action 

● The textual descriptions are replaced by the translated code fragments 

● The translated code fragments can be executed as regular code 

1.4.2 Non-Functional Requirements 

● Translation time should be fast so it does not slow down the user’s development 

pace 

● User must be connected to the internet 
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1.4.3 UI Requirements 

● Translation action should be easily accessible from the text editor area 

● The user interface should be clean and easy to understand 

1.5 Intended Users and Uses 

Users and their uses of this product: 

● Someone who has a basic knowledge about the Java programming language 

(variables, methods, classes, etc.), but does not know the exact method necessary 

to perform their specific operation 

Future iterations of this project may allow users who do not have any programming 

knowledge to use this system. 

1.6 Assumptions and Limitations 

1.6.1 Assumptions 

● The user will enter their natural language statements in the general format we 

expect 

○ No punctuation, no commas between parameters, writing hardcoded string 

surrounded by double quotes (“”) 

● The user will enter their natural language statement in the location in the editor 

they want the translated code inserted 

● The user will enter only natural language statements supported by the system’s 

dataset (Java method invocations) 

● The user has knowledge about the basics of Java programming such as methods, 

variables, classes, etc. 

1.6.2 Limitations 

● Translations will only be supported for common code syntax, method invocations, 

and classes. 

● The translation may not generate the proper code fragment on the first attempt or 

at all for certain inputs 

● Translation will not occur for natural language statements not represented in the 

dataset (non-Java method invocation) 

● Translations are only supported from English to Java source code 
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● Only one translation will be supported at a time 

1.7 Expected End Project and Deliverables 

Note: These were the parts of the project that we were able to implement, which closely 

resembled our original goal and schedule for the project. 

User Interface (November 2019): 

The user interface (UI) will present the user with an Integrated Development 

Environment (IDE) text editor where the user can enter their natural language statements 

representing the translated code. The user interface will also allow the user to interact 

with the system to translate their natural language statements to equivalent code. Once 

the translate button is interacted with, the natural language statement will be 

preprocessed and passed to the classification/translation engine. The UI will then accept 

the translated code from the Translation Engine and display it in the editor at the location 

where the original natural language statement is. 

Classification and Translation Engine (December 2019): 

The classification engine will be trained from a dataset of natural language, expected code 

translation pairs. This model (along with the natural language statement from the UI) will 

be passed to the translation engine. The model will then use the input to produce an 

output of the expected code translation. Finally, the translation engine will pass the 

expected translation to the UI. 

Dataset (March 2020): 

The dataset will contain the natural language statement, expected code translation pairs. 

This dataset will contain a source (natural language statements) and target (expected 

code translation) files for training, validation, and testing. The Java code side of the 

dataset will be automatically generated by mining Java method invocation statements 
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from GitHub using the GitHub API with the C# Octokit library. These mined Java method 

invocation samples will be labeled using a labeling method described later in the 

document. The dataset will be created locally and will be stored on the translation server. 

Model and Dataset Optimization (March-April 2020): 

Throughout the development process, the training model (architecture and 

hyperparameters) and dataset will be optimized to achieve the best performance. 

Preprocessing of the entered natural language statement will be done to convert the input 

natural language statement into verb-noun format (only selecting the verbs and nouns of 

the input sentence) and converting the parameters into their Java type. The performance 

will be measured through neural machine translation metrics, research, and observed 

translation results.  

Final Product (April 2020): 

The final Intelligent Code Editor project will connect the User Interface, Dataset, and 

Classification/Translation Engine using a dedicated server. This will create a complete 

end-to-end translation system supporting Java method invocations. 
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2. Specifications and Analysis 

2.1 Proposed Design 

User Interface (UI) 

An IntelliJ plugin was created for the user interface. This plugin will present the user with 

an IDE text/code editor where they can enter their natural language statements. It will 

also give the user the ability to translate the natural language statement to code through 

some interaction button. When the translation functionality is interacted with, all method 

parameters will be converted into their type and NLTK preprocessing (see next section) 

will be done. The UI will then connect to the classification and translation engine while 

passing the preprocessed natural language statement and receiving and displaying the 

expected code translation. Finally, the translated code will be executable by the user. 

NLTK Preprocessing 

Preprocessing of the input natural language statement is executed to remove all non-verb 

and non-noun words from the sentence, convert all words to present tense, and convert 

all characters to lowercase. This allows the translation engine to focus on the most 

relevant parts of the sentence (verbs being the method name and nouns being the 

parameter types).  

Classification and Translation Engine 

The Classification and Translation engine were implemented using OpenNMT-py. The 

classification engine OpenNMT-py model was trained using a dataset containing natural 

language statement, expected code translation pairs. The preprocessed natural language 

statement from the UI is then given to the translation engine that will output the expected 

translated code to the UI. 

Dataset 

The dataset contains the natural language statement, expected code translation pairs. The 

dataset contains a source (natural language statements) and target (expected code 

translation) files for training, validation, and testing. The Java code side of the dataset was 

automatically generated by mining Java method invocation statements from GitHub. 

These mined Java method statements were preprocessed to separate the words into 
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separate tokens and converting the method parameters and variables to their Java types. 

The mined Java method invocation samples are then labeled using a labeling method 

described later in the document. The dataset will be created locally and is stored on the 

translation server. 

2.2 Design Analysis 

Strengths 

For the user interface, documentation for creating an IntelliJ plugin is abundant and there 

is a large community for it. An IntelliJ plugin is also easy to install and use in the IntelliJ 

editor, making it easier and more likely for a user to utilize. NLTK was chosen for 

preprocessing as it is a well-known and high performing Python language processing 

library. NLTK also supported part of speech (PoS) tagging that is required for our project. 

OpenNMT-py is a well-documented and widely used Neural Machine Translation engine 

that will convert the natural language statement to the expected code. One major 

strength of OpenNMT-py is that it comes with an easy interface for model architecture 

configuration, resembling modern techniques for neural machine translation. This 

simplifies the process of creating a model from scratch as that is something that requires a 

significant amount of experience and original research. 

Weaknesses 

When creating an IntelliJ plugin, it does not allow the user to modify everything about the 

code editor, so we had to ensure that we can modify what is necessary for our 

requirements. Furthermore, the built-in part of speech tagger included with NLTK does 

not perform particularly well for programming domain sentences, so modifications were 

made to support programming domain words such as creating a custom part of speech 

tagger. 

One weakness of using OpenNMT-py is the models take a long time to train. However, 

this would be a problem regardless of the system we chose to implement it with. Careful 

consideration for how to create a representative dataset that allows us to effectively train 

the model was also given. Additionally, OpenNMT-py is more effective when translating 

from a certain type of statement to another, so preprocessing using NLTK was done to 

further improve this functionality. 
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A further detailed list of challenges associated with each part of the system is shown 

below: 

● Text Editor:  

○ Required Input Format: Since English natural language is ambiguous, we 

have required the user to enter some of the natural language statement in a 

certain format 

■ Specify only the outermost method in a nested method call or the last 

method in a chained method call in natural language and format all 

other method invocations with their original variable names. Also, do 

not include parameter spaces, punctuation, and surround hardcoded 

Strings with double quotes. 

● User Interface:  

○ Java Parameter Type Automation: We need to create a way to 

automatically label the Java parameters with their types. 

■ This will be done using a Java script that will take the original Java file 

the mined method was contained in and the mined statement. The 

script will output the statement with their parameters and variables 

converted to their types. 

○ Custom Java Type Translation: Custom Java data types will be handled the 

same way build-in Java types are. 

● NLTK Script:  

○ Correct PoS Tagging of Method Information and Parameters to Verb and 

Nouns: We need to ensure that all Java types and other useful information 

are correctly classified as Nouns or Verbs to avoid them being removed. 

■ This will be done by adding all Java types into the custom PoS tagger. 

● OpenNMT-py:  

○ Uniform Dataset Representation: Since we will have six people labeling the 

dataset, there needs to be a defined, uniform method to label the dataset. 

■ This technique is outlined later in the Design Plan section (2.4). 

 

2.3 Engineering Standards and Design Practices 

Our team utilized the IEEE standards IEEE 1028-2008, IEEE 16326-2009, and IEEE 

1008-1987 related to project management and testing. Our team followed the Agile 
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Development Process with Test Driven Development. Our team had weekly meetings 

where we reviewed our project progress, updated our task board, and planned future 

work. Bi-weekly meetings were held where demos of our progress were shown and 

feedback was received to further improve our design. These meetings ensured there was 

clear communication between our group and our client. Testing our design throughout the 

design process was also incorporated to validate our design. This means that our 

requirements were continuously changing and improved throughout the development 

process. 

2.4 Design Plan 

The below diagram shows our design plan: 
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Figure 1. Detailed Design Diagram 

User Interface 

The user will first enter their natural language statement into the code editor. Then after 

the user clicks the translate button, the User Interface will convert the method 

parameters to their Java types, storing the mapping of parameters to their types in a table, 

and then will pass the natural language statement to NLTK for preprocessing.  

After the Translation Engine runs the preprocessed statement through, it will return the 

translated Java code to the User Interface. The User Interface will then convert the Java 

type parameters to their original parameter names and display the code translation in the 

text editor. The user interface implements many of the functional requirements. 

Dataset 

The Dataset (located on the classification engine) stores the natural language statement 

(in labeled format) and expected code translation in the respective source (natural 

language) and target (expected code translation) files that are split into training, 

validation, and test sets. These dataset files will then be passed to the Classification 

Engine for training.  

Below is the detailed dataset labeling method we used for labeling the mined Java method 

invocations: 

Note: Steps in ​Bold ​have been automated 

Simplified Natural Language Labeling Steps: 

1. Determine sentence label representation of Java code (start from the Java 

Documentation description of the method) 

a. Modify Java Documentation description slightly to make it sound more like 

what a person would say while keeping the same general original format 

2. Convert Parameters to their type 
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3. Run sentence through Script: 

https://git.linux.iastate.edu/hungphd/sdmay19-intelligent-code-editor-gitlab/bl

ob/pos-verb-noun-integration/nltk-scripts/Sentence_Preprocessing.py 

a. Put all sentences from steps 1 and 2 into the Statement.txt file (the results 

will be contained in the Statement_processed.txt file 

i. This  step will convert the sentence to Verb-Noun format, convert 

all characters to lowercase, and convert all words to present tense 

4. (complete steps 1-3 for ALL other statements first) ​ Incorporate synonyms and 

different statement structures (multiple dataset entries for each mined Java code 

entry) 

a. Using WordNet synsets, thesaurus, and different word orderings while 

keeping the original meaning (likely done manually) 

 

Java Code (all automated): 

1. Put correct spacing format between method names, parenthesis, and parameters 

a. Automated using Script: 

https://git.linux.iastate.edu/hungphd/sdmay19-intelligent-code-editor-gi

tlab/blob/pos-verb-noun-integration/nltk-scripts/Java_Preprocessing.py 

i. Put the mined Java statements into the Code.txt text file (the 

results will be contained in the Code_preprocessed.txt file) 

2. Convert parameter names to their type 

 

Reminders: 

Dataset Labeling: 

● Format natural language descriptions using Java Documentation descriptions 

○ Start with only this statement and then we can add more generalized 

statements later 

● Do not include commas between method parameters in natural language input 

Java Dataset Labeling: 

● Convert all chained method calls to their type except for the last method call 
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Following this dataset labeling process helped to ensure that uniform dataset labeling 

occurred between all six members and will result in the best OpenNMT-py training and 

translation results as the labels generalize to other formats. 

Classification Engine 

The Classification Engine trained the OpenNMT-py model on the provided dataset, using 

the natural language statement as the input and the expected code translation as the 

output. After training has been completed, the model will calculate translation metrics 

(such as BLEU score) on the testing dataset to determine the effectiveness of the results. 

The Classification Engine will then pass the trained model to the translation engine to use 

for translation. 

NLTK Preprocessing 

The natural language statement that the user wants to translate is first passed through 

NLTK preprocessing. During this process, the sentence will have all non-verb and 

non-noun words removed, convert all words to present tense, and convert all characters 

to lowercase. This preprocessing will convert the input sentence into a format that the 

Translation Engine will be able to more effectively run through the model. 

Translation Engine 

The Translation Engine takes the trained model from the Classification Engine and the 

input from the User Interface to generate the expected code translation. This expected 

code translation will be passed to the user interface to display. The dataset, classification, 

and translation engine satisfy many of the non-functional requirements. 

Architecture Diagram: 
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Figure 2. User Interface and Translation Server Architecture Diagram 

The above architecture diagram shows in more detail the communication between the UI 

and the classification/translation server. 

User Flow Diagram: 

 

Figure 3. User Flow Diagram 

The above user flow diagram shows more detailed information about the input and output 

for each component when the user triggers a translation operation with a running 

example for reference.   

17 



 

 

3. Statement of Work 

3.1 Previous Work and Literature 

User Interface 

Our research for the user interface started with the IntelliJ plugin API documentation [1]. 

Here we found useful information about what functionality was available for creating a 

custom  IntelliJ plugin. We also utilized various documentation resources for creating an 

Eclipse Plugin [2] and Visual Studio Code Extension [3]; however, we did not find as many 

documentation resources and a large community for these plugins. This led us to choose 

an IntelliJ plugin. 

Natural Language Preprocessing 

The AnyCode project is also a system that converts natural language statements into Java 

code statements [7]. Through reading this report, we determined that the best 

preprocessing would be to have the resulting natural language statement only contain the 

verbs and nouns from the original sentence. This is because AnyCode found that the verbs 

commonly represent the action or method name and the nouns commonly represent the 

method parameters [7]. Using this method allows our system to remove all the less 

important words for the original sentence, allowing the OpenNMT-py system to focus on 

the more important words in the sentence. 

Classification/Translation Engine 

We read many different research papers to determine methods to implement neural 

machine translation. From these papers, we determined that modern Neural Machine 

Translation mechanisms like the Transformer model are some of the best performing 

models [4]. With this information, we researched tools that can execute this kind of neural 
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machine translation. We then found OpenNMT-py [5], which has easy interaction with 

modern neural machine translation models as we were able to train a basic model for 

language translation within a couple of days. 

Dataset 

The dataset will be modeled in the way OpenNMT-py expects: a source (natural language 

statements) and target (expected code translation) files for training, validation, and 

testing. 

While there are current systems that rely solely on Deep Learning or solely on 

preprocessing to achieve the translation results, our system combines both preprocessing 

with Deep Learning to achieve a result that takes the best part from each system. 

Additionally, our system aims to allow the user to enter any natural language statement 

and preprocess it into a format that our system can use effectively while other systems 

require the user to enter their natural language in a certain format or have poor 

translation results. 

3.2 Technology Considerations 

Strengths 

For the user interface, documentation for creating an IntelliJ plugin is abundant and there 

is a large community for it. An IntelliJ plugin is also easy to install and use in the IntelliJ 

editor, making it something a user would more likely use. NLTK was chosen for 

preprocessing as it is a well-known and high performing language processing Python 

library.  

OpenNMT-py is a well-documented and widely used Neural Machine Translation engine 

that will convert our natural language statement to the expected code. One major 

strength of OpenNMT-py is that it comes with training model templates resembling 

modern techniques for neural machine translation while also giving more customization 

options. This means we could use a model like the Transformer model without having to 

configure this ourselves from scratch. This simplified the process of creating a model from 
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scratch as that is something that requires a significant more amount of experience and 

original research with Machine Learning and Natural Language Processing. 

Weaknesses 

When creating an IntelliJ plugin, it does not allow the user to modify everything about the 

code editor, so we had to ensure that we could modify what is necessary. This was solved 

by either modifying our features or determining other mechanisms aside from IntelliJ 

plugins to implement those features. Furthermore, the built in part of speech tagger 

included with NLTK does not perform well for programming domain sentences, so 

modifications were made to support programming domain words by creating a custom 

part of speech tagger. 

Some weaknesses of using OpenNMT-py are the models take a long time to train. 

However, this would be a problem regardless of the system we chose to implement it with. 

This issue was  resolved by requesting more powerful computers or servers to execute the 

training and classification of the model. Creating a representative dataset to effectively 

train the model was also a challenge. This took a long time to produce, but automating 

some of the dataset labeling steps helped to shorten this time. Additionally, OpenNMT-py 

can only accurately translate more specific kinds of statements. This is why we 

implemented the NLTK preprocessing before running the natural language statement 

through the translation engine.  

3.3 Task Decomposition 

● Research 

○ Research and test tools for creating IDE plugin/extension 

○ Research tools for natural language to code translation 

○ Research tools for creating a dataset 

● User Interface (IntelliJ plugin) 

○ Modify the IntelliJ IDE to allow the user to enter both natural language 

statements and code 

○ Create a mechanism that allows the user to translate the natural language 

statement to code 

○ Consider the code context to translate variables, methods, class names, and 

method parameters to generic names or Java types when passing into 

OpenNMT-py 
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○ Connect the UI to the Dataset, Classification, and Translation Engine 

● NLTK Preprocessing 

○ Implement the verb-noun, present tense, and lowercase natural language 

statement preprocessing 

○ Create a part of speech tagger that will accurately tag programming-domain 

sentences 

○ Configure an AWS server to host these processes and OpenNMT-py 

● Dataset 

○ Research word synonyms, word permutations, and English dialects 

○ Research current datasets that could be used to train the classification 

model 

○ Automatically mine Java method invocations from sources like GitHub 

○ Label the mined Java method invocation dataset using labeling method 

○ Store the natural language statement, expected code translation pairs for 

the source and target training, validation, and testing dataset 

○ Optimize the dataset for best performance 

○ Pass the training dataset to the Classification Engine 

● Classification Engine 

○ Use a dataset to train the natural language statement to expected code 

translation model 

○ Optimize the model architecture and hyperparameters for best 

performance 

○ Pass the trained model to the Translation Engine 

● Translation Engine 

○ Take as input the trained model from the Classification Engine and the 

natural language input from the User Interface 

○ Run the preprocessed input natural language statement through for 

translation 

○ Pass the expected code translation to the UI 

● Testing 

○ Write unit, GUI, and integration tests  

○ Run usability tests  

○ Make improvements based on testing results  
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3.4 Possible Risks and Risk Management 

A potential risk is a lack of knowledge in natural language processing. This starts with 

creating a large and representative enough dataset for training the classification model. 

Usually, datasets require thousands of entries, which could take a long time to create. For 

this, we mined the Java method invocation statements from online sources like GitHub. 

Additionally, preprocessing of the natural language statements was done to ensure that 

the model can more accurately translate simpler types of statements. 

Since a general system that can translate any natural language statement was very 

ambitious, restrictions were made to only support translation to Java method invocation 

statements (outlined in 2.4 Design Analysis section). Additionally, a limitation of use case 

may require users with some programming knowledge, so they can format their answers 

in a way that would make them easier to translate. 

Once we have our dataset, training the classification model is a lengthy process, requiring 

powerful computing. We will need a dedicated computer or server for this purpose. 

Finally, once the model is trained, the accuracy of the translation may be an issue since 

even modern neural machine translation systems are unlikely to correctly translate the 

natural language to code accurately [6]. To compensate, we give the user the five most 

confident translation options to compensate. 

3.5 Project Proposed Milestones and Evaluation Criteria 

Note: These were the milestones set by us earlier in the project and were achieved. 

The first milestone for the project will be researching and determining which user 

interface (UI), dataset, and classification/translation engine tools we want to use and 

create. This will uncover the initial direction of the project. 
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After the UI, dataset, and classification/translation tools are selected, the next milestone 

will be creating simple demos of using the UI, Dataset, and Classification/Translation 

engine for our purpose in isolation. This will involve giving fake data to these systems to 

ensure they behave correctly in isolation. The UI should allow the user to enter natural 

language statements and be able to convert them to code using a fake back-end system. 

The classification/translation engine should take a pre-made dataset containing natural 

language statements and equivalent code to train and test the model. The model 

translations should be better than 36% accuracy. 

After everything is working in isolation, the next milestone will be to connect everything 

to ensure the system works end-to-end. This means the user will provide the natural 

language statement to the editor and the translation engine will provide the UI with the 

expected translated code to display. 

Major milestones after this will involve improving the dataset and 

classification/translation engine to translate more complicated natural language 

statements (methods, classes, algorithms, etc.). Improvements will be made to the dataset 

to include automatically mined natural language, code pairs from online GitHub 

repositories that are labeled using our labeling method. Preprocessing of the natural 

language statement will also be done before passing the statement to the translation 

engine to allow the translation engine to only focus on simpler sentence constructs. Once 

completed, the classification/translation engine will meet our accuracy and functional 

requirements. 

The final milestone for the project will involve testing and verification of the design. This 

will involve writing tests and running usability tests to ensure our design works as 

expected. Successful completion will have all required functionality tested, verified, and 

accepted. 
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3.6 Project Tracking Procedures 

Our group utilized GitLab, Trello, and GroupMe to track our progress throughout the 

semester. GitLab was used to manage our project code. Each team member developed in 

their individual branch and merged that into the master branch when ready.  

Trello was used to manage task creation and assignment. Each task has a title, description, 

assigned member, and due date. There is a backlog, doing, done, and completed column. 

These represent tasks yet to be assigned, currently being worked on, done, and verified 

respectively. It is expected each member accomplishes their tasks assigned for each 

sprint. 

GroupMe was utilized for immediate communication with the team. Here, we 

communicated meeting times, quick questions, and other communication. 

3.7 Expected Results and Validation 

Note: This was the expected results of our system, which we were mostly able to achieve. 

Our desired outcome is to create an end-to-end system where the user can enter a natural 

language statement into the code editor and the system will be able to translate the 

statement to equivalent code that will be displayed and be executable by the user in the 

editor. 

Our implementation will be validated by creating unit and GUI tests and through usability 

tests. This will ensure that our system behaves as expected and is easily usable by the 

users. These testing and usability tests will be developed throughout the development 

process to ensure we are creating an optimal solution. 
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In addition, our training model and dataset’s performance will be validated using neural 

machine translation performance measures, research, observation of translation, and 

comparisons against similar systems on the same scale. 
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4. Project Timeline, Estimated Resources, and 

Challenges 

4.1 Project Timeline 

Table I 

Intelligent Code Editor Project Timeline 

 

The first major stage of the project was to conduct the initial research of the UI, dataset, 

and classification/translation engine tools we want to use, which was completed in late 

October. This research set the foundation for the remainder of the project. 

The second major stage involved setting up and creating the basic functionality for the UI, 

dataset, and classification/translation engine. For the UI, the natural language input and 

translation interaction were configured. The classification/translation engine was 

configured and trained on a basic print dataset, and set up as a server. Finally, we created 

a targeted Java print dataset. This work was completed in late November, and it was used 

to confirm our design for the remainder of the project. 

Connectivity between the UI, dataset, and classification/translation engine was the next 

major task. This task involved connecting the UI to the dataset and classification engine, 

the dataset to the classification/translation engine, and the classification/translation 

engine to the UI. We then ensured that we can correctly send information between these 
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systems. This work was completed in late-March / early-April once we got access to a 

dedicated AWS server. 

The final stage involved optimizing, testing, and validating our results. This started with 

fine-tuning the dataset and classification/translation engine for the best results. 

Automatic dataset generation from GitHub and NLTK preprocessing was done in this 

phase. These steps created a more accurate translation system. We also continued writing 

the automated tests, end-to-end tests, and user validation testing. Finally, feedback from 

those tests were used to improve our final design and document our results for future 

teams that may work on this project. 

4.2 Feasibility Assessment 

The end-to-end natural language to code translation system explained above was very 

ambitious. Current systems struggle obtaining high accuracy for this purpose. Because of 

this, a more reasonable solution to this project was made to have the user enter more 

structured statements that the classification model can more easily learn from. Input 

preprocessing before passing the natural language input into the translation engine 

helped to improve our accuracy. 

Since a general system that can translate any natural language statement is very 

ambitious, restrictions were made to only support Java method invocation translations. 

Additionally, a limitation of use cases may require users with some programming 

knowledge, so they can format their answers in a way that would make them easier to 

translate. 

Another challenge was creating a large and representative enough dataset that will allow 

the trained model to be more accurate. Automation scripts were created to help automate 

parts of the manual dataset labeling process. 

4.3 Personnel Effort Requirements 
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Table II 

Intelligent Code Editor Personal Effort Requirements 

Research  30 hours 

Research IDE Plugin/Extension  10 hours 

Research Natural Language to Code Translation  10 hours 

Research Creating Dataset  10 hours 

User Interface (IntelliJ Plugin)  40 hours 

Enter Natural Language Statements and Code Functionality  10 hours 

Create Mechanism to Translate Natural Language to Code  10 hours 

Consider Code Context Before Passing Natural Language to 

OpenNMT-py 

15 hours 

Connect the UI to the Dataset, Classification, and Translation 

Engine 

5 hours 

NLTK Preprocessing  45 hours 

Implement the verb-noun natural language statement 

preprocessing 

15 hours 

Create a part of speech tagger that will accurately tag 

programming-domain sentences 

15 hours 

Create and setup AWS Server to run these preprocessing 

scripts and OpenNMT-py 

25 hours 

Dataset  110 hours 
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Research Word Synonyms, Word Permutations, and Different 

English Dialects 

5 hours 

Research current datasets that could be used for training  10 hours 

Automatically mine natural language, code pairs from GitHub  25 hours 

Label the mined Java method invocation dataset using labeling 

method 

50 hours 

Store dataset in source and target training, validation, and 

testing datasets 

5 hours 

Optimize dataset for best performance  10 hours 

Pass the Training Dataset to the Classification Engine  5 hours 

Classification Engine  35 hours 

Use Dataset to Train The Natural Language Statement to 

Expected Code Translation Model 

10 hours 

Optimize Model Architecture and Hyperparameters for Best 

Performance 

20 hours 

Pass the Training Model to the Translation Engine  5 hours 

Translation Engine  15 hours 

Receive Input and Trained Model from User Interface and 

Classification Engine 

5 hours 

Pass the Expected Code Translation to the UI  10 hours 

Testing  60 hours 

Write Unit, GUI, and Integration Tests  25 hours 

Run usability Tests  10 hours 

Make Improvements Based on Testing Results  25 hours 
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4.4 Other Resource Requirements 

A dedicated GPU server was required and provided to train our classification model on 

the dataset. Our group has been given access to the Pronto GPU server at Iowa State 

University [8]. This server is a shared computing resource that allows access to powerful 

computing resources, including multiple GPUs. This sped up our training and development 

process as well as allowed us to train models with more complex architectures. 

Additionally, a dedicated AWS server was provided to run our classification/translation 

engine’s REST server. This server connects with the front-end to allow data to be sent 

from the user interface to the classification/translation server. 

4.5 Financial Requirements 

This project does not provide or require any financial resources. All the required 

resources will be provided to us as needed. 
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5. Testing and Implementation 

5.1 Interface Specifications 

This project does not contain any interfacing between hardware and software 

components, as it consists entirely of three software parts: the IntelliJ plugin (client), 

OpenNMT-py (the translation engine into which we feed our model), and the 

OpenNMT-py REST server (hosted on an AWS server). However, there are interfaces 

between the user and the plugin as well as the plugin and the OpenNMT-py system, which 

are described below. 

The chosen IDE for this project is an IntelliJ plugin. This interface is a good way to present 

our plugin to a user that is wanting to write code without using an actual programming 

language such as Java. IntelliJ’s user interface is easy to become familiar with but has 

many advanced options for more adept users. An IntelliJ plugin is needed to integrate our 

software with the IDE. NLTK is used to preprocess the original natural language 

statement to remove unnecessary words from translation. 

To convert the natural language to code within the IntelliJ editor, the user selects the 

natural language they typed and triggers our plugin. This process interfaces with the 

end-to-end system that consists of the dataset and classification/translation REST engine, 

which is located on a dedicated server. 

5.2 Hardware and Software 

For hardware, the Pronto shared computing resource was used to train and test the 

classification model, and we used our personal computers for the rest of the development, 

which includes creating the user interface. In order to provide our translation engine as a 

service, we hosted it on an AWS EC2 server. 
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In terms of software, we used the IntelliJ Platform SDK to develop the IntelliJ plugin that 

was used for the user interface. OpenNMT-py was used to implement the 

classification/translation engine and server. NLTK was used to preprocess the natural 

language statements before passing them to OpenNMT-py. GitLab was used for source 

control, collaboration, and maintaining the project history. Trello was used for project 

management and distributing the work among team members. 

5.3 Functional Testing 

We wrote automated unit, GUI, and integration tests for the user interface component of 

the project. This ensured that the system both meets our specified requirements and 

behaves correctly as an end-to-end system. These tests were written throughout the 

development process to catch bugs early. Additionally, where appropriate, the test-driven 

development methodology was used in front-end development. 

Our client and graduate student performed acceptance testing on the plugin at weekly 

meetings to evaluate the direction our software is going, specifically the user interface 

aspect, to confirm that the product meets requirements, and to make recommendations 

for future improvements. 

Following standard Java practices, the Intellij plugin has tests located in src/test/java. 

These tests cover functionality within the plugin itself, such as whether the translate 

action calls an external API and whether text preprocessing is performed correctly. 

5.4 Non-Functional Testing 

As mentioned in the feasibility section of this design document, the success rate of similar 

projects is not high. Our application aims to improve on the AnyCode accuracy benchmark 

of around 36% [7]. Most of the current systems, which support more general statement 

translations, obtain around a 25%-35% success rate. 
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In terms of other non-functional requirements for the application, the first requirement 

we focused on is the appearance of the plugin application. The plugin should be easy to 

use, and easy to access and should have a user interface that is fairly simple and fast. This 

user interface was essentially designed for a user who is adept with a computer but 

shouldn’t overwhelm them with information. 

Another area of non-functional testing that is considered is security. Given that we will 

have a public REST server running to serve clients the results of our translated model, we 

ensured that best practices in security are followed, such as blocking unused ports from 

the outside internet and delivering data over secure TLS connections. 

5.5 Process 

Unit, GUI, and integration tests were written throughout the development process to test 

the functionality of the user interface and the end-to-end system. This ensured that we 

caught bugs or missed requirements early. During the development of our dataset and 

classification/translation engine, we tested the effectiveness of our dataset and 

classification/translation engine architecture and hyperparameters. This was done by 

running our dataset through our designed neural machine translation architecture and 

observing the results according to research comparison and neural machine translation 

metrics such a BLEU and calculating the translation accuracy. Modifications to our system 

were made when unexpected results were observed. This cycle continued until we 

achieved all requirements and achieved accurate translation results. 

5.6 Results 

Dataset Creation 

First, we generated a simple Java print statement dataset that contained different ways to 

say print with some different values to print. The translated results can be seen below: 
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Figure 4. Initial Java Print Dataset Output 

We observed that System.out.println(“”); was being correctly generated for each entry; 

however, the value that was supposed to be printed was not. From this testing, we learned 

that the default OpenNMT-py configuration can correctly translate common code (in this 

case the Java print statement). 

We then created a more targeted Java print statement dataset consisting of “print 

number” where number represents all numbers from 1 to 100,000 written in words and in 

numerical representation. After running this new dataset through our translation model, 

we achieved the following results: 

 

Figure 5. Java Print Number Output 
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We could see that the model is now populating the print statement with values; however, 

these values were not correct (they were supposed to be numbers 1-10). After observing 

these results, we started experimenting with the OpenNMT-py network architecture and 

hyperparameters. 

OpenNMT-py Configuration 

First, we tried using the Transformer architecture. Passing the same dataset through, we 

achieved the following results: 

 

Figure 6. Java Print Number Transformer Dataset 

For some reason, the results achieved were worse than the basic network architecture. 

This could have been due to the Transformer model requiring many GPU resources, so we 

have to scale down some of the parameters. 

Next, we tried using an RNN network architecture. After running the same dataset 

through the RNN architecture, we achieved the following results: 
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Figure 7. Java Print Number RNN Output 

These results are exactly what we expect. From this experiment, we learned that values 

that are contained within the training dataset have a high probability of being translated 

correctly during testing. 

Complex Dataset 

After confirming our results using a basic dataset, we then tested our results on more 

complex datasets. The first dataset we tried was the Python Parallel Code Corpora [9]. 

This dataset consisted of automatically generated natural language to code translations 

generated from Stack Overflow. After running this dataset through OpenNMT-py, we 

achieved the following results: 
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Figure 8. Python Parallel Corpora Output 

The results achieved for this dataset are not ideal. It did pull out common syntax (DCSP 

and return), but the results were not accurate. This is likely due to the natural language 

statements and expected code translation being very complex (many lines with 

uncommon syntax).  

We then began researching other datasets when we found the Conala dataset [10]. This 

dataset again was created using automated mining methods from Stack Overflow. 

However, this dataset also contained manually generated data points that the automatic 

generation system used when mining. After running this dataset through our system with 

the Transformer architecture on more powerful GPU resources, we achieved the 

following results: 

 

Figure 9. Conala Dataset Output 

We observed that the results resembled their expected code much more closely. This led 

us to determine how we can create a more accurate dataset that would achieve greater 

performance or how we can update our network architecture to achieve better results on 

the Conala dataset. 

Next, we generated a dataset targeting the Java print statement. Our dataset contained 

various hardcoded strings, arithmetic, variables, and function calls. After running the 

dataset through our system, we received the following results and metrics: 
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Figure 10. Conala Dataset Translations 

 

 

Figure 11. Conala Dataset BLEU Score 

Accuracy = 40% 

We observed that the arithmetic statements were translated correctly almost all the time, 

but string values were not. Additionally, variables and function calls had an accurate 

38 



 

translation. These results led us to create a dataset that supports more generalized 

natural language inputs. 

The next dataset we created included different types of Java method invocations that 

were mined from online sources like GitHub using the GitHub API with the Octokit C# 

library. The natural language part of the dataset consisted of only verbs representing the 

action or method and nouns representing the method parameters. All other parts of the 

sentence were removed to allow OpenNMT-py to focus on the more important parts of 

the sentence.  The method parameters and variables were converted to their Java types. 

Our final dataset consisted of approximately 1,000 Java different method invocations and 

about 1,500 total samples. 

A snippet of the results can be seen below: 

 

In total, our system has about 50-60% accuracy and a BLEU score of 66.5, showing that 

our preprocessing method is a good solution to this problem. The accuracy results achieve 

the about 50% accuracy we were aiming for while the BLEU score highly exceeds our 

expectations. 
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6. Implementation 

6.1 IntelliJ Plugin 

The IntelliJ plugin acts as the user interface of the project. Here, the user is presented 

with a Java IDE text editor where the user can enter natural language statements or 

normal Java code. If the user enters a natural language statement, they can interact with 

the translation button that will preprocess that natural language statement by converting 

the method parameters and variables to their types and format the sentence into 

verb-noun format by calling a Python script hosted on our AWS server. An example of this 

translation can be seen below: 

 

Input Statement: ​return the char value at index pos+1 for str 

Preprocessed Statement: ​return char value index int string 

 

The above example shows that the variables pos+1 and str are converted into their Java 

types of int and string respectively. Also, only the verbs and nouns from the original input 

sentence remain after preprocessing while the other parts of the sentence are removed.  

While it is not required, to achieve better translation results, the user is encouraged to 

follow the below steps: 

● Do not include spaces between multiple words or operations in raw natural 

language statement 

● Do not include commas between method parameters in natural language input 

● Avoid using punctuation in raw natural language statement 

● Write hardcoded String surrounded by double quotes in raw natural language 

statement 

● Include all information about objects being called and nested and chained method 

information 

○ Only the last method call will be translated in a chained method call chain 

○ Nested method invocations will be written as is in natural language 

statement 

This helps the OpenNMT-py translation engine to focus on the most important words, 

leading to more accurate translation results. A restriction to our system is that only the 
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outermost method (in the case of nested method invocations) and the last method (in the 

case of a chained method invocation) are translated. This means that all other methods in 

a nested or chained method call must be explicitly stated by the user as input.  

A screenshot of the IntelliJ Plugin interface and functionality is shown below: 

 

Figure 12. IntelliJ Plugin User Interface 

The above screenshot shows the text area where there is a mix of normal Java code and a 

natural language statement. The user then interacted with the natural language 

statement (find the max of x and y) first selecting it and left clicking on it to select the 

translate option, triggering the preprocessing and translations actions. During the 

translation process, the OpenNMT-py translation engine runs the preprocessed natural 

language statement through the trained model and returns the top-n most confident 

expected Java code translations. The user can then click on the suggestion they want and 

that code snippet will be populated in the location in the text editor where the original 

statement was. In general, the user interface is used to support most of the functional 

requirements. 

6.2 Dataset 

A significant part of this project involved creating a dataset that consisted of the natural 

language statement, equivalent Java code pairs. The natural language statements are in 

the verb-noun format described above with each parameter converted into their type. 

This will allow preprocessed user input natural language statements to be in the same 

format as the dataset natural language labels and generalize better given that our system 

cannot account for every possible variable or method name. Additionally, the natural 
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language labels for each method were generated by starting with the Java documentation 

description of the method. This ensured more uniform dataset labeling since six different 

members were labeling the dataset. The Java code consists of the method format with its 

parameters stored as their type and each token separated by a space. Creating the 

dataset in this format allowed our neural machine translation system to focus on the main 

parts of the sentence during translation, helping to reduce the ambiguity of natural 

language as the description of the method would map to the method name and the Java 

type parameters would map to each other. 

 

The Java method invocations in the dataset were automatically mined using the C# 

Octokit library and GitHub API. The natural language statements were manually 

generated but automatically preprocessed to put them in the required dataset format. 

6.3 Classification and Translation Engine 

OpenNMT-py, a neural machine translation system, was used to convert the natural 

language statement to its equivalent Java code. The classification engine of OpenNMT-py 

would take the dataset explained above and train a model using the transformer 

architecture (a commonly used and well performing neural machine translation 

architecture). This trained model would then be passed to the translation engine. The 

translation engine would then take the preprocessed input from the user interface and 

run it through the trained model. The five most confident expected code translations 

would then be passed as output to the user interface to be displayed. The communication 

between the user interface and the translation engine takes place using OpenNMT-py’s 

REST API interface. The OpenNMT-py REST API is hosted on an AWS server. 
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7. Closing Material 

7.1 Conclusion 

7.1.1 Development Progress 

In the development of the Intelligent Code Editor, we have done the following: 

● Looked into existing tools related to NLP (Natural Language Processing) and its use 

in translating natural language to code 

○ Discovered OpenNMT, an open-source neural machine translation system 

○ Used for research on various translations (image-to-text, 

English-to-Spanish) [4] 

● Completed a literature analysis on research related to translating natural language 

to code 

○ A paper on a tool called ​anyCode ​ was particularly insightful [7] 

● Worked on the development of the plugin 

○ Made prototype plugins for Visual Studio Code, IntelliJ, and Eclipse 

○ Ultimately decided to develop the plugin for IntelliJ 

● Created an IntelliJ plugin 

○ Allows the user to enter and select natural language in the code editor 

○ Passes the entered natural language statement to the preprocessing script 

and the translation engine 

○ Receives the expected code translation back from the translation engine 

○ Uses context to assign variables a generic name myVar to ease the burden 

on the translation engine 

● OpenNMT-py Configuration 

○ Configured OpenNMT-py on the Pronto GPU server 

○ Determined how to run a dataset through the classification engine 

○ Determine how to adjust network architecture and hyperparameters 

○ Researched and tested different datasets, architectures, and 

hyperparameters 

● Dataset Creation 
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○ Created a Java print statement dataset to use as a baseline for our 

translation results 

● NLTK Preprocessing 

○ Preprocess the original natural language statement into Verb-Noun format 

■ Example: ​stop thread ​ (​stop​ is the verb and ​thread ​ is the noun) 

○ Change all verbs to present tense 

○ Convert all characters to lowercase 

● Method Invocation Dataset Creation 

○ Automatically mine Java method invocation statements from online sources 

like GitHub 

○ Label the natural language statement part of these mined statements using 

Verb-Noun format 

● Create a Part of Speech Tagger 

○ Create a part of speech tagger that more accurately labels the verbs and 

nouns in programming domain sentences 

● User Interface Parameter Mapping 

○ Create technique for front-end to convert the input natural language 

statement variables and method parameters to their Java types. 

● AWS Server Integration 

○ Hosted the NLTK preprocessing script and OpenNMT-py REST API on AWS 

■ Preprocessing script deployed as an AWS Lambda function 

■ OpenNMT-py server running continuously on dedicated EC2 

instance 

● End-to-end System Integration 

○ Connected each of the components together to create a fully integrated 

final system 

 

While we were able to create a system that has about 50-60% accuracy, further 

improvements could be made to improve our system in the future. 

 

Potential Ways to Improve Accuracy 

● Problem​: <unk> token issues 

○ Information​: <unk> token errors occur when there are words that are not 

contained in the trained models vocabulary 
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○ Solution​: Determine a better way to handle <unk> token errors 

■ Could use a system like GloBE word embeddings to find the most 

likely word given all the words stored in the vocabulary 

■ The conala dataset used conditional probabilities to find the most 

likely word match from the vocabulary 

■ Include a greater variety of programming domain words in our 

trained vocabulary 

● Problem​: Lack of generalization in preprocessing 

○ Information​: Since we are manually generating the natural language 

statements for the code translations, there are limitations to the results 

given that we cannot generate all possible word substitutions or sentence 

structures 

○ Solution​: These could be improved using automated methods to preprocess 

the sentence. 

■ Something similar to AnyCode’s WordNet could be used to generate 

all possible word substitutions 

■ NLTK parse trees could be used to generate different sentence 

structures 

● We could also see about using the part of speech information 

in our neural machine translation system 

● Problem​: Having the system try to guess the correct output instead of trying to 

match to the best output 

○ Information​: Since our translations are not guaranteed to be a valid Java 

method, this could cause the translations to be a little off, but that could 

result in an invalid Java translation 

○ Solution​: Some other systems try to match to the most likely translation 

from a list of possible valid translations 

● Again, this could be improved by using something like GloBE 

word embeddings or Conala dataset conditional probabilities 

that could choose the translation with the most likely 

translation 

● Problem​: Our dataset is not trained on every possible Java method invocation 
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○ Information​: Since our model is only trained on the most frequent Java 

method invocations from the top GitHub Java projects, not all the Java 

methods are included 

○ Solution​: We could create a system that supports all built-in Java methods 

or a focus group (like Machine Learning) 

■ We could mine our Java methods from the Java documentation 

instead of GitHub 

■ If we use a subset, we could mine our Java methods from that 

framework’s API 

● Problem​: OpenNMT-py not having the best translation results 

○ Information​: Hung showed us Google-NMT that generally had better BLEU 

results compared to OpenNMT-py 

○ Solution​: We could implement our neural machine translation system using 

a better translation system 

● Problem​: Lacking supercomputers to train the model on 

○ Information​: Google spent about a week with 96 TPUs training their basic 

translation model, so our training resources are lacking compared to these 

○ Solution​: This could be solved by trying to find more power computing 

resources to train the model on 

● Problem​: Manual labeling process is tedious and may lead to inconsistent labeling 

among different people, even with specific instructions to follow like we had 

○ Information​: Obtaining a large sample of Java method invocations is nearly 

trivial, as Keaton’s work has shown us. We were able to mine only method 

invocations fairly precisely out of huge Java projects on GitHub. 

○ Solution​: Professor Jannesari suggested techniques such as RenderGAN 

(​https://arxiv.org/pdf/1611.01331.pdf​) to generate labeled data. Amazon 

AWS provides a service for automating data labeling that might use papers 

like RenderGAN under the hood: 

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-data-labeling.html 

● Problem​: Unlike the ​anyCode ​ paper, we did not do as much NLP before using the 

data in the model. 

○ Solution​: Professor Jannesari suggested that building a layer upon BERT 

(​https://github.com/google-research/bert#what-is-bert​) might improve 

results. 
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7.3 Appendices 

7.3.1 Operation Manual 

Setup/Demo: 

1. After obtaining access, clone our project’s GitLab repository at 

https://git.linux.iastate.edu/hungphd/sdmay19-intelligent-code-editor-gitlab 

 

Figure 13. Git Clone Project Command 

2. Open the project in IntelliJ IDEA. (/intellij-plugin) 

 

Figure 14. IntelliJ Plugin Project Folder 

3. Create a new run configuration. From the templates, choose Gradle. Set this 

project as the Gradle project and add :runIde to Tasks. 
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Figure 15. Gradle Build Parameters 

4. After running the configuration, you will know that it works if another IntelliJ 

window opens. This new window has the plugin installed. 

5. To obtain translations from the OpenNMT-py server, you'll need to have that 

running as well. Refer to these​ ​installation instructions​. 

 

Figure 16. OpenNMT-py REST API Server Configuration Command 

6. Download a trained model from our Google Drive (they end in .pt) and save it to 

available_models. 

7. Create a conf.json in available_models with the following contents: 
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Figure 17. conf.json File Contents 

Change the model name if needed. Then start the server using​ ​these instructions​. 

After the server starts, you should be able to select text in the development IntelliJ 

window and use either Shift+T or the context menu to trigger the translation action. Note 

that only one statement can be translated at a time. 

 

Figure 18. User Interface Statement Selection​ ​and Results 
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Now the user can select from the list of possible translations. Once they click on a possible 

translation, it will be displayed and executable in the IDE. 

7.3.2 Previous Design Versions and Lessons Learned 

The first design version consisted of translations for only a single type of command: the 

Java print statement (System.out.println()). For this version, we created a dataset that 

consisted of english statements that were to be translated to some form of a Java print 

statement. This initial targeted dataset allowed us to learn about what kinds of data 

resulted in the best translation results. Through creating this dataset, we also learned 

about the importance of using diverse statement translations to create a well distributed 

dataset. This allowed us to create our dataset using statement translations from many 

different resources like GitHub in later revisions instead of creating the entire dataset 

manually. Doing so gave us better and more general translation results.  

 

For the neural machine translation system, we used OpenNMT-py to train on the Java 

print dataset. When a user entered the natural language statement, that raw statement 

would be run through the OpenNMT-py system and would be converted to the respective 

Java print dataset. An issue that we ran into with this approach was that we were relying 

on the OpenNMT-py system too much for the translations. During our final presentation 

for CprE 491, we received a suggestion to only use the neural machine translation system 

to translate more specific types of statements rather than all types of statements. With 

this feedback, we then transitioned into the next version of our project, utilizing 

preprocessing of the English statements. 

 

The second major revision of the project included input and dataset natural language and 

Java code statement preprocessing and creating a more diverse dataset that contained 

multiple types of Java method invocations from online code sources like GitHub. The 

natural language statement preprocessing consisted of only keeping the verbs and nouns 

from the original statement and converting all words to present tense and all characters 

to lowercase. Doing so would remove the less important parts of the original statement, 

which would allow the OpenNMT-py translation engine to focus on the most important 

words. Later, we also limited the scope of our project by only translating the outermost or 

last method call in a nested or chained method sequence respectively, allowing for simpler 

translation results. Future groups may remove this restriction.  
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Mining the Java method invocation statements from sources like GitHub allows for a 

more diverse representation in the dataset with real-world use cases. This also allowed us 

to determine what the most commonly used Java methods are to ensure our system 

supported them. To label the dataset, we all followed a team-defined set of steps to 

ensure labeling uniformity between members. During the creation of this version of the 

project, we learned the importance of data mining, preprocessing, and generalization.  

7.3.3 Code 

All code related to our project can be found in our GitLab repository. Note that the 

professor has not given public access to this repository, therefore you will need to contact 

him first. ​jannesar@iastate.edu 

 

https://git.linux.iastate.edu/hungphd/sdmay19-intelligent-code-editor-gitlab 
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