

Intelligent Code Editor

Final Report

Revised April 18, 2020

sdmay20-46

Professor Ali Jannesari — Client & Adviser

Keaton Johnson — Systems Lead

Jonathan Novak — Machine Learning Lead

Matthew Orth — Meeting Facilitator

Garet Phelps — Report Manager

Isaac Spanier — Test Lead

John Jago — Software Lead

Team Email​: sdmay20-46@iastate.edu

Team Website​: https://sdmay20-46.sd.ece.iastate.edu

Table of Contents

Table of Contents 1

List of Figures 2

List of Tables 4

Definitions 4

1. Introduction 5

1.1 Acknowledgement 5

1.2 Project and Problem Statement 5

1.2.1 Problem Statement 5

1.2.2 Solution Approach 5

1.3 Operational Environment 6

1.4 Requirements 6

1.4.1 Functional Requirements 6

1.4.2 Non-Functional Requirements 6

1.4.3 UI Requirements 7

1.5 Intended Users and Uses 7

1.6 Assumptions and Limitations 7

1.6.1 Assumptions 7

1.6.2 Limitations 7

1.7 Expected End Project and Deliverables 8

2. Specifications and Analysis 10

2.1 Proposed Design 10

2.2 Design Analysis 11

2.3 Engineering Standards and Design Practices 12

2.4 Design Plan 13

3. Statement of Work 18

3.1 Previous Work and Literature 18

3.2 Technology Considerations 19

3.3 Task Decomposition 20

3.4 Possible Risks and Risk Management 22

3.5 Project Proposed Milestones and Evaluation Criteria 22

3.6 Project Tracking Procedures 24

1

3.7 Expected Results and Validation 24

4. Project Timeline, Estimated Resources, and Challenges 26

4.1 Project Timeline 26

4.2 Feasibility Assessment 27

4.3 Personnel Effort Requirements 27

4.4 Other Resource Requirements 30

4.5 Financial Requirements 30

5. Testing and Implementation 31

5.1 Interface Specifications 31

5.2 Hardware and Software 31

5.3 Functional Testing 32

5.4 Non-Functional Testing 32

5.5 Process 33

5.6 Results 33

6. Implementation 40

6.1 IntelliJ Plugin 40

6.2 Dataset 41

6.3 Classification and Translation Engine 42

7. Closing Material 43

7.1 Conclusion 43

7.1.1 Development Progress 43

7.2 References 47

7.3 Appendices 48

7.3.1 Operation Manual 48

7.3.2 Previous Design Versions and Lessons Learned 51

7.3.3 Code 52

List of Figures

Figure Page Number

Figure 1. Detailed Design Diagram 13

2

Figure 2. User Interface and Translation Server

Architecture Diagram

17

Figure 3. User Flow Diagram 17

Figure 4. Initial Java Print Dataset Output 35

Figure 5. Java Print Number Output 35

Figure 6. Java Print Number Transformer Dataset 36

Figure 7. Java Print Number RNN Output 36

Figure 8. Python Parallel Corpora Output 37

Figure 9. Conala Dataset Output 38

Figure 10. Conala Dataset Translations 39

Figure 11. Conala Dataset BLEU Score 39

Figure 12. Custom IntelliJ Plugin User Interface 42

Figure 13. Git Clone Project Command 46

3

Figure 14. IntelliJ Plugin Project Folder 47

Figure 15. Gradle Build Parameters 47

Figure 16. OpenNMT-py REST API Server

Configuration Command

48

Figure 17. conf.json File Contents 48

Figure 18. User Interface Statement Selection and

Results

49

List of Tables

Table Page Number

Table I. Intelligent Code Editor Project Timeline 27

Table II. Intelligent Code Editor Personal Effort

Requirement

22

Definitions

● UI = User Interface

● GUI = Graphical User Interface

● NLP = Natural Language Processing

● NLTK = Natural Language Toolkit, a Python library for working with English

4

1. Introduction

1.1 Acknowledgement

We would like to thank Professor Ali Jannesari for his guidance on this project not only as

the primary client but also as the faculty advisor. We would also like to thank PhD student

Hung Phan for sharing his knowledge and for his involvement.

1.2 Project and Problem Statement

1.2.1 Problem Statement

With software becoming more prevalent in fields where it previously did not exist, more

people must learn how to write programs to accomplish their work. One example is

bioinformatics. At Iowa State, COM S 444: Bioinformatic Analysis is cross-listed with

Biology and Genetics, among other majors. Students in these majors do not necessarily

have to become top programmers to do their work, but their work involves programming

nonetheless. A lack of experience in programming can become an unnecessary hindrance

to getting their work done, especially when trying to figure out the syntax of a

programming language.

1.2.2 Solution Approach

Our project provides the foundation of a system for users to type what they want to

accomplish in natural language and convert that natural language to the software code.

Our foundational system focuses only on translating natural language statements to Java

method invocations. Future systems will expand this functionality to other programming

constructs and languages. This would allow someone who doesn’t know how to write a

particular statement in a programming language to type an approximation of that

statement in English and have the editor convert the English to executable code.

5

The primary deliverable is a plugin to an existing integrated development environment

(IDE) or text editor, which the user will interact with to translate the natural language to

code. Behind the scenes is some preprocessing and a classification/translation engine that

handles the actual conversion of English to code using a trained model. Also produced is a

dataset of possible natural language inputs that someone might type and the expected

code translations using automatic code mining methods, which allows us to train our

model and test the accuracy of our final product. Our solution is tailored towards users

who have some programming knowledge and will support simple Java method

invocations.

1.3 Operational Environment

The IDE plugin along with the other software components resides on computers and

remote servers. One major risk is that malicious software might be able to read data from

our services. While we are not storing personal information, is it possible that people

might not want their English (or the resulting code) exposed, as this could leak enough

information for an attack on the program that the user is writing or release of confidential

information. Therefore, considerations to the security of our software, especially if it

communicates over a network, were taken.

1.4 Requirements

1.4.1 Functional Requirements

● User can select or otherwise input the text they wish to translate to code

● User can trigger a translate action

● The textual descriptions are replaced by the translated code fragments

● The translated code fragments can be executed as regular code

1.4.2 Non-Functional Requirements

● Translation time should be fast so it does not slow down the user’s development

pace

● User must be connected to the internet

6

1.4.3 UI Requirements

● Translation action should be easily accessible from the text editor area

● The user interface should be clean and easy to understand

1.5 Intended Users and Uses

Users and their uses of this product:

● Someone who has a basic knowledge about the Java programming language

(variables, methods, classes, etc.), but does not know the exact method necessary

to perform their specific operation

Future iterations of this project may allow users who do not have any programming

knowledge to use this system.

1.6 Assumptions and Limitations

1.6.1 Assumptions

● The user will enter their natural language statements in the general format we

expect

○ No punctuation, no commas between parameters, writing hardcoded string

surrounded by double quotes (“”)

● The user will enter their natural language statement in the location in the editor

they want the translated code inserted

● The user will enter only natural language statements supported by the system’s

dataset (Java method invocations)

● The user has knowledge about the basics of Java programming such as methods,

variables, classes, etc.

1.6.2 Limitations

● Translations will only be supported for common code syntax, method invocations,

and classes.

● The translation may not generate the proper code fragment on the first attempt or

at all for certain inputs

● Translation will not occur for natural language statements not represented in the

dataset (non-Java method invocation)

● Translations are only supported from English to Java source code

7

● Only one translation will be supported at a time

1.7 Expected End Project and Deliverables

Note: These were the parts of the project that we were able to implement, which closely

resembled our original goal and schedule for the project.

User Interface (November 2019):

The user interface (UI) will present the user with an Integrated Development

Environment (IDE) text editor where the user can enter their natural language statements

representing the translated code. The user interface will also allow the user to interact

with the system to translate their natural language statements to equivalent code. Once

the translate button is interacted with, the natural language statement will be

preprocessed and passed to the classification/translation engine. The UI will then accept

the translated code from the Translation Engine and display it in the editor at the location

where the original natural language statement is.

Classification and Translation Engine (December 2019):

The classification engine will be trained from a dataset of natural language, expected code

translation pairs. This model (along with the natural language statement from the UI) will

be passed to the translation engine. The model will then use the input to produce an

output of the expected code translation. Finally, the translation engine will pass the

expected translation to the UI.

Dataset (March 2020):

The dataset will contain the natural language statement, expected code translation pairs.

This dataset will contain a source (natural language statements) and target (expected

code translation) files for training, validation, and testing. The Java code side of the

dataset will be automatically generated by mining Java method invocation statements

8

from GitHub using the GitHub API with the C# Octokit library. These mined Java method

invocation samples will be labeled using a labeling method described later in the

document. The dataset will be created locally and will be stored on the translation server.

Model and Dataset Optimization (March-April 2020):

Throughout the development process, the training model (architecture and

hyperparameters) and dataset will be optimized to achieve the best performance.

Preprocessing of the entered natural language statement will be done to convert the input

natural language statement into verb-noun format (only selecting the verbs and nouns of

the input sentence) and converting the parameters into their Java type. The performance

will be measured through neural machine translation metrics, research, and observed

translation results.

Final Product (April 2020):

The final Intelligent Code Editor project will connect the User Interface, Dataset, and

Classification/Translation Engine using a dedicated server. This will create a complete

end-to-end translation system supporting Java method invocations.

9

2. Specifications and Analysis

2.1 Proposed Design

User Interface (UI)

An IntelliJ plugin was created for the user interface. This plugin will present the user with

an IDE text/code editor where they can enter their natural language statements. It will

also give the user the ability to translate the natural language statement to code through

some interaction button. When the translation functionality is interacted with, all method

parameters will be converted into their type and NLTK preprocessing (see next section)

will be done. The UI will then connect to the classification and translation engine while

passing the preprocessed natural language statement and receiving and displaying the

expected code translation. Finally, the translated code will be executable by the user.

NLTK Preprocessing

Preprocessing of the input natural language statement is executed to remove all non-verb

and non-noun words from the sentence, convert all words to present tense, and convert

all characters to lowercase. This allows the translation engine to focus on the most

relevant parts of the sentence (verbs being the method name and nouns being the

parameter types).

Classification and Translation Engine

The Classification and Translation engine were implemented using OpenNMT-py. The

classification engine OpenNMT-py model was trained using a dataset containing natural

language statement, expected code translation pairs. The preprocessed natural language

statement from the UI is then given to the translation engine that will output the expected

translated code to the UI.

Dataset

The dataset contains the natural language statement, expected code translation pairs. The

dataset contains a source (natural language statements) and target (expected code

translation) files for training, validation, and testing. The Java code side of the dataset was

automatically generated by mining Java method invocation statements from GitHub.

These mined Java method statements were preprocessed to separate the words into

10

separate tokens and converting the method parameters and variables to their Java types.

The mined Java method invocation samples are then labeled using a labeling method

described later in the document. The dataset will be created locally and is stored on the

translation server.

2.2 Design Analysis

Strengths

For the user interface, documentation for creating an IntelliJ plugin is abundant and there

is a large community for it. An IntelliJ plugin is also easy to install and use in the IntelliJ

editor, making it easier and more likely for a user to utilize. NLTK was chosen for

preprocessing as it is a well-known and high performing Python language processing

library. NLTK also supported part of speech (PoS) tagging that is required for our project.

OpenNMT-py is a well-documented and widely used Neural Machine Translation engine

that will convert the natural language statement to the expected code. One major

strength of OpenNMT-py is that it comes with an easy interface for model architecture

configuration, resembling modern techniques for neural machine translation. This

simplifies the process of creating a model from scratch as that is something that requires a

significant amount of experience and original research.

Weaknesses

When creating an IntelliJ plugin, it does not allow the user to modify everything about the

code editor, so we had to ensure that we can modify what is necessary for our

requirements. Furthermore, the built-in part of speech tagger included with NLTK does

not perform particularly well for programming domain sentences, so modifications were

made to support programming domain words such as creating a custom part of speech

tagger.

One weakness of using OpenNMT-py is the models take a long time to train. However,

this would be a problem regardless of the system we chose to implement it with. Careful

consideration for how to create a representative dataset that allows us to effectively train

the model was also given. Additionally, OpenNMT-py is more effective when translating

from a certain type of statement to another, so preprocessing using NLTK was done to

further improve this functionality.

11

A further detailed list of challenges associated with each part of the system is shown

below:

● Text Editor:

○ Required Input Format: Since English natural language is ambiguous, we

have required the user to enter some of the natural language statement in a

certain format

■ Specify only the outermost method in a nested method call or the last

method in a chained method call in natural language and format all

other method invocations with their original variable names. Also, do

not include parameter spaces, punctuation, and surround hardcoded

Strings with double quotes.

● User Interface:

○ Java Parameter Type Automation: We need to create a way to

automatically label the Java parameters with their types.

■ This will be done using a Java script that will take the original Java file

the mined method was contained in and the mined statement. The

script will output the statement with their parameters and variables

converted to their types.

○ Custom Java Type Translation: Custom Java data types will be handled the

same way build-in Java types are.

● NLTK Script:

○ Correct PoS Tagging of Method Information and Parameters to Verb and

Nouns: We need to ensure that all Java types and other useful information

are correctly classified as Nouns or Verbs to avoid them being removed.

■ This will be done by adding all Java types into the custom PoS tagger.

● OpenNMT-py:

○ Uniform Dataset Representation: Since we will have six people labeling the

dataset, there needs to be a defined, uniform method to label the dataset.

■ This technique is outlined later in the Design Plan section (2.4).

2.3 Engineering Standards and Design Practices

Our team utilized the IEEE standards IEEE 1028-2008, IEEE 16326-2009, and IEEE

1008-1987 related to project management and testing. Our team followed the Agile

12

Development Process with Test Driven Development. Our team had weekly meetings

where we reviewed our project progress, updated our task board, and planned future

work. Bi-weekly meetings were held where demos of our progress were shown and

feedback was received to further improve our design. These meetings ensured there was

clear communication between our group and our client. Testing our design throughout the

design process was also incorporated to validate our design. This means that our

requirements were continuously changing and improved throughout the development

process.

2.4 Design Plan

The below diagram shows our design plan:

13

Figure 1. Detailed Design Diagram

User Interface

The user will first enter their natural language statement into the code editor. Then after

the user clicks the translate button, the User Interface will convert the method

parameters to their Java types, storing the mapping of parameters to their types in a table,

and then will pass the natural language statement to NLTK for preprocessing.

After the Translation Engine runs the preprocessed statement through, it will return the

translated Java code to the User Interface. The User Interface will then convert the Java

type parameters to their original parameter names and display the code translation in the

text editor. The user interface implements many of the functional requirements.

Dataset

The Dataset (located on the classification engine) stores the natural language statement

(in labeled format) and expected code translation in the respective source (natural

language) and target (expected code translation) files that are split into training,

validation, and test sets. These dataset files will then be passed to the Classification

Engine for training.

Below is the detailed dataset labeling method we used for labeling the mined Java method

invocations:

Note: Steps in ​Bold ​have been automated

Simplified Natural Language Labeling Steps:

1. Determine sentence label representation of Java code (start from the Java

Documentation description of the method)

a. Modify Java Documentation description slightly to make it sound more like

what a person would say while keeping the same general original format

2. Convert Parameters to their type

14

3. Run sentence through Script:

https://git.linux.iastate.edu/hungphd/sdmay19-intelligent-code-editor-gitlab/bl

ob/pos-verb-noun-integration/nltk-scripts/Sentence_Preprocessing.py

a. Put all sentences from steps 1 and 2 into the Statement.txt file (the results

will be contained in the Statement_processed.txt file

i. This step will convert the sentence to Verb-Noun format, convert

all characters to lowercase, and convert all words to present tense

4. (complete steps 1-3 for ALL other statements first) ​ Incorporate synonyms and

different statement structures (multiple dataset entries for each mined Java code

entry)

a. Using WordNet synsets, thesaurus, and different word orderings while

keeping the original meaning (likely done manually)

Java Code (all automated):

1. Put correct spacing format between method names, parenthesis, and parameters

a. Automated using Script:

https://git.linux.iastate.edu/hungphd/sdmay19-intelligent-code-editor-gi

tlab/blob/pos-verb-noun-integration/nltk-scripts/Java_Preprocessing.py

i. Put the mined Java statements into the Code.txt text file (the

results will be contained in the Code_preprocessed.txt file)

2. Convert parameter names to their type

Reminders:

Dataset Labeling:

● Format natural language descriptions using Java Documentation descriptions

○ Start with only this statement and then we can add more generalized

statements later

● Do not include commas between method parameters in natural language input

Java Dataset Labeling:

● Convert all chained method calls to their type except for the last method call

15

https://git.linux.iastate.edu/hungphd/sdmay19-intelligent-code-editor-gitlab/blob/pos-verb-noun-integration/nltk-scripts/Sentence_Preprocessing.py
https://git.linux.iastate.edu/hungphd/sdmay19-intelligent-code-editor-gitlab/blob/pos-verb-noun-integration/nltk-scripts/Sentence_Preprocessing.py
https://git.linux.iastate.edu/hungphd/sdmay19-intelligent-code-editor-gitlab/blob/pos-verb-noun-integration/nltk-scripts/Sentence_Preprocessing.py
https://git.linux.iastate.edu/hungphd/sdmay19-intelligent-code-editor-gitlab/blob/pos-verb-noun-integration/nltk-scripts/Java_Preprocessing.py
https://git.linux.iastate.edu/hungphd/sdmay19-intelligent-code-editor-gitlab/blob/pos-verb-noun-integration/nltk-scripts/Java_Preprocessing.py
https://git.linux.iastate.edu/hungphd/sdmay19-intelligent-code-editor-gitlab/blob/pos-verb-noun-integration/nltk-scripts/Java_Preprocessing.py

Following this dataset labeling process helped to ensure that uniform dataset labeling

occurred between all six members and will result in the best OpenNMT-py training and

translation results as the labels generalize to other formats.

Classification Engine

The Classification Engine trained the OpenNMT-py model on the provided dataset, using

the natural language statement as the input and the expected code translation as the

output. After training has been completed, the model will calculate translation metrics

(such as BLEU score) on the testing dataset to determine the effectiveness of the results.

The Classification Engine will then pass the trained model to the translation engine to use

for translation.

NLTK Preprocessing

The natural language statement that the user wants to translate is first passed through

NLTK preprocessing. During this process, the sentence will have all non-verb and

non-noun words removed, convert all words to present tense, and convert all characters

to lowercase. This preprocessing will convert the input sentence into a format that the

Translation Engine will be able to more effectively run through the model.

Translation Engine

The Translation Engine takes the trained model from the Classification Engine and the

input from the User Interface to generate the expected code translation. This expected

code translation will be passed to the user interface to display. The dataset, classification,

and translation engine satisfy many of the non-functional requirements.

Architecture Diagram:

16

Figure 2. User Interface and Translation Server Architecture Diagram

The above architecture diagram shows in more detail the communication between the UI

and the classification/translation server.

User Flow Diagram:

Figure 3. User Flow Diagram

The above user flow diagram shows more detailed information about the input and output

for each component when the user triggers a translation operation with a running

example for reference.

17

3. Statement of Work

3.1 Previous Work and Literature

User Interface

Our research for the user interface started with the IntelliJ plugin API documentation [1].

Here we found useful information about what functionality was available for creating a

custom IntelliJ plugin. We also utilized various documentation resources for creating an

Eclipse Plugin [2] and Visual Studio Code Extension [3]; however, we did not find as many

documentation resources and a large community for these plugins. This led us to choose

an IntelliJ plugin.

Natural Language Preprocessing

The AnyCode project is also a system that converts natural language statements into Java

code statements [7]. Through reading this report, we determined that the best

preprocessing would be to have the resulting natural language statement only contain the

verbs and nouns from the original sentence. This is because AnyCode found that the verbs

commonly represent the action or method name and the nouns commonly represent the

method parameters [7]. Using this method allows our system to remove all the less

important words for the original sentence, allowing the OpenNMT-py system to focus on

the more important words in the sentence.

Classification/Translation Engine

We read many different research papers to determine methods to implement neural

machine translation. From these papers, we determined that modern Neural Machine

Translation mechanisms like the Transformer model are some of the best performing

models [4]. With this information, we researched tools that can execute this kind of neural

18

machine translation. We then found OpenNMT-py [5], which has easy interaction with

modern neural machine translation models as we were able to train a basic model for

language translation within a couple of days.

Dataset

The dataset will be modeled in the way OpenNMT-py expects: a source (natural language

statements) and target (expected code translation) files for training, validation, and

testing.

While there are current systems that rely solely on Deep Learning or solely on

preprocessing to achieve the translation results, our system combines both preprocessing

with Deep Learning to achieve a result that takes the best part from each system.

Additionally, our system aims to allow the user to enter any natural language statement

and preprocess it into a format that our system can use effectively while other systems

require the user to enter their natural language in a certain format or have poor

translation results.

3.2 Technology Considerations

Strengths

For the user interface, documentation for creating an IntelliJ plugin is abundant and there

is a large community for it. An IntelliJ plugin is also easy to install and use in the IntelliJ

editor, making it something a user would more likely use. NLTK was chosen for

preprocessing as it is a well-known and high performing language processing Python

library.

OpenNMT-py is a well-documented and widely used Neural Machine Translation engine

that will convert our natural language statement to the expected code. One major

strength of OpenNMT-py is that it comes with training model templates resembling

modern techniques for neural machine translation while also giving more customization

options. This means we could use a model like the Transformer model without having to

configure this ourselves from scratch. This simplified the process of creating a model from

19

scratch as that is something that requires a significant more amount of experience and

original research with Machine Learning and Natural Language Processing.

Weaknesses

When creating an IntelliJ plugin, it does not allow the user to modify everything about the

code editor, so we had to ensure that we could modify what is necessary. This was solved

by either modifying our features or determining other mechanisms aside from IntelliJ

plugins to implement those features. Furthermore, the built in part of speech tagger

included with NLTK does not perform well for programming domain sentences, so

modifications were made to support programming domain words by creating a custom

part of speech tagger.

Some weaknesses of using OpenNMT-py are the models take a long time to train.

However, this would be a problem regardless of the system we chose to implement it with.

This issue was resolved by requesting more powerful computers or servers to execute the

training and classification of the model. Creating a representative dataset to effectively

train the model was also a challenge. This took a long time to produce, but automating

some of the dataset labeling steps helped to shorten this time. Additionally, OpenNMT-py

can only accurately translate more specific kinds of statements. This is why we

implemented the NLTK preprocessing before running the natural language statement

through the translation engine.

3.3 Task Decomposition

● Research

○ Research and test tools for creating IDE plugin/extension

○ Research tools for natural language to code translation

○ Research tools for creating a dataset

● User Interface (IntelliJ plugin)

○ Modify the IntelliJ IDE to allow the user to enter both natural language

statements and code

○ Create a mechanism that allows the user to translate the natural language

statement to code

○ Consider the code context to translate variables, methods, class names, and

method parameters to generic names or Java types when passing into

OpenNMT-py

20

○ Connect the UI to the Dataset, Classification, and Translation Engine

● NLTK Preprocessing

○ Implement the verb-noun, present tense, and lowercase natural language

statement preprocessing

○ Create a part of speech tagger that will accurately tag programming-domain

sentences

○ Configure an AWS server to host these processes and OpenNMT-py

● Dataset

○ Research word synonyms, word permutations, and English dialects

○ Research current datasets that could be used to train the classification

model

○ Automatically mine Java method invocations from sources like GitHub

○ Label the mined Java method invocation dataset using labeling method

○ Store the natural language statement, expected code translation pairs for

the source and target training, validation, and testing dataset

○ Optimize the dataset for best performance

○ Pass the training dataset to the Classification Engine

● Classification Engine

○ Use a dataset to train the natural language statement to expected code

translation model

○ Optimize the model architecture and hyperparameters for best

performance

○ Pass the trained model to the Translation Engine

● Translation Engine

○ Take as input the trained model from the Classification Engine and the

natural language input from the User Interface

○ Run the preprocessed input natural language statement through for

translation

○ Pass the expected code translation to the UI

● Testing

○ Write unit, GUI, and integration tests

○ Run usability tests

○ Make improvements based on testing results

21

3.4 Possible Risks and Risk Management

A potential risk is a lack of knowledge in natural language processing. This starts with

creating a large and representative enough dataset for training the classification model.

Usually, datasets require thousands of entries, which could take a long time to create. For

this, we mined the Java method invocation statements from online sources like GitHub.

Additionally, preprocessing of the natural language statements was done to ensure that

the model can more accurately translate simpler types of statements.

Since a general system that can translate any natural language statement was very

ambitious, restrictions were made to only support translation to Java method invocation

statements (outlined in 2.4 Design Analysis section). Additionally, a limitation of use case

may require users with some programming knowledge, so they can format their answers

in a way that would make them easier to translate.

Once we have our dataset, training the classification model is a lengthy process, requiring

powerful computing. We will need a dedicated computer or server for this purpose.

Finally, once the model is trained, the accuracy of the translation may be an issue since

even modern neural machine translation systems are unlikely to correctly translate the

natural language to code accurately [6]. To compensate, we give the user the five most

confident translation options to compensate.

3.5 Project Proposed Milestones and Evaluation Criteria

Note: These were the milestones set by us earlier in the project and were achieved.

The first milestone for the project will be researching and determining which user

interface (UI), dataset, and classification/translation engine tools we want to use and

create. This will uncover the initial direction of the project.

22

After the UI, dataset, and classification/translation tools are selected, the next milestone

will be creating simple demos of using the UI, Dataset, and Classification/Translation

engine for our purpose in isolation. This will involve giving fake data to these systems to

ensure they behave correctly in isolation. The UI should allow the user to enter natural

language statements and be able to convert them to code using a fake back-end system.

The classification/translation engine should take a pre-made dataset containing natural

language statements and equivalent code to train and test the model. The model

translations should be better than 36% accuracy.

After everything is working in isolation, the next milestone will be to connect everything

to ensure the system works end-to-end. This means the user will provide the natural

language statement to the editor and the translation engine will provide the UI with the

expected translated code to display.

Major milestones after this will involve improving the dataset and

classification/translation engine to translate more complicated natural language

statements (methods, classes, algorithms, etc.). Improvements will be made to the dataset

to include automatically mined natural language, code pairs from online GitHub

repositories that are labeled using our labeling method. Preprocessing of the natural

language statement will also be done before passing the statement to the translation

engine to allow the translation engine to only focus on simpler sentence constructs. Once

completed, the classification/translation engine will meet our accuracy and functional

requirements.

The final milestone for the project will involve testing and verification of the design. This

will involve writing tests and running usability tests to ensure our design works as

expected. Successful completion will have all required functionality tested, verified, and

accepted.

23

3.6 Project Tracking Procedures

Our group utilized GitLab, Trello, and GroupMe to track our progress throughout the

semester. GitLab was used to manage our project code. Each team member developed in

their individual branch and merged that into the master branch when ready.

Trello was used to manage task creation and assignment. Each task has a title, description,

assigned member, and due date. There is a backlog, doing, done, and completed column.

These represent tasks yet to be assigned, currently being worked on, done, and verified

respectively. It is expected each member accomplishes their tasks assigned for each

sprint.

GroupMe was utilized for immediate communication with the team. Here, we

communicated meeting times, quick questions, and other communication.

3.7 Expected Results and Validation

Note: This was the expected results of our system, which we were mostly able to achieve.

Our desired outcome is to create an end-to-end system where the user can enter a natural

language statement into the code editor and the system will be able to translate the

statement to equivalent code that will be displayed and be executable by the user in the

editor.

Our implementation will be validated by creating unit and GUI tests and through usability

tests. This will ensure that our system behaves as expected and is easily usable by the

users. These testing and usability tests will be developed throughout the development

process to ensure we are creating an optimal solution.

24

In addition, our training model and dataset’s performance will be validated using neural

machine translation performance measures, research, observation of translation, and

comparisons against similar systems on the same scale.

25

4. Project Timeline, Estimated Resources, and

Challenges

4.1 Project Timeline

Table I

Intelligent Code Editor Project Timeline

The first major stage of the project was to conduct the initial research of the UI, dataset,

and classification/translation engine tools we want to use, which was completed in late

October. This research set the foundation for the remainder of the project.

The second major stage involved setting up and creating the basic functionality for the UI,

dataset, and classification/translation engine. For the UI, the natural language input and

translation interaction were configured. The classification/translation engine was

configured and trained on a basic print dataset, and set up as a server. Finally, we created

a targeted Java print dataset. This work was completed in late November, and it was used

to confirm our design for the remainder of the project.

Connectivity between the UI, dataset, and classification/translation engine was the next

major task. This task involved connecting the UI to the dataset and classification engine,

the dataset to the classification/translation engine, and the classification/translation

engine to the UI. We then ensured that we can correctly send information between these

26

systems. This work was completed in late-March / early-April once we got access to a

dedicated AWS server.

The final stage involved optimizing, testing, and validating our results. This started with

fine-tuning the dataset and classification/translation engine for the best results.

Automatic dataset generation from GitHub and NLTK preprocessing was done in this

phase. These steps created a more accurate translation system. We also continued writing

the automated tests, end-to-end tests, and user validation testing. Finally, feedback from

those tests were used to improve our final design and document our results for future

teams that may work on this project.

4.2 Feasibility Assessment

The end-to-end natural language to code translation system explained above was very

ambitious. Current systems struggle obtaining high accuracy for this purpose. Because of

this, a more reasonable solution to this project was made to have the user enter more

structured statements that the classification model can more easily learn from. Input

preprocessing before passing the natural language input into the translation engine

helped to improve our accuracy.

Since a general system that can translate any natural language statement is very

ambitious, restrictions were made to only support Java method invocation translations.

Additionally, a limitation of use cases may require users with some programming

knowledge, so they can format their answers in a way that would make them easier to

translate.

Another challenge was creating a large and representative enough dataset that will allow

the trained model to be more accurate. Automation scripts were created to help automate

parts of the manual dataset labeling process.

4.3 Personnel Effort Requirements

27

Table II

Intelligent Code Editor Personal Effort Requirements

Research 30 hours

Research IDE Plugin/Extension 10 hours

Research Natural Language to Code Translation 10 hours

Research Creating Dataset 10 hours

User Interface (IntelliJ Plugin) 40 hours

Enter Natural Language Statements and Code Functionality 10 hours

Create Mechanism to Translate Natural Language to Code 10 hours

Consider Code Context Before Passing Natural Language to

OpenNMT-py

15 hours

Connect the UI to the Dataset, Classification, and Translation

Engine

5 hours

NLTK Preprocessing 45 hours

Implement the verb-noun natural language statement

preprocessing

15 hours

Create a part of speech tagger that will accurately tag

programming-domain sentences

15 hours

Create and setup AWS Server to run these preprocessing

scripts and OpenNMT-py

25 hours

Dataset 110 hours

28

Research Word Synonyms, Word Permutations, and Different

English Dialects

5 hours

Research current datasets that could be used for training 10 hours

Automatically mine natural language, code pairs from GitHub 25 hours

Label the mined Java method invocation dataset using labeling

method

50 hours

Store dataset in source and target training, validation, and

testing datasets

5 hours

Optimize dataset for best performance 10 hours

Pass the Training Dataset to the Classification Engine 5 hours

Classification Engine 35 hours

Use Dataset to Train The Natural Language Statement to

Expected Code Translation Model

10 hours

Optimize Model Architecture and Hyperparameters for Best

Performance

20 hours

Pass the Training Model to the Translation Engine 5 hours

Translation Engine 15 hours

Receive Input and Trained Model from User Interface and

Classification Engine

5 hours

Pass the Expected Code Translation to the UI 10 hours

Testing 60 hours

Write Unit, GUI, and Integration Tests 25 hours

Run usability Tests 10 hours

Make Improvements Based on Testing Results 25 hours

29

4.4 Other Resource Requirements

A dedicated GPU server was required and provided to train our classification model on

the dataset. Our group has been given access to the Pronto GPU server at Iowa State

University [8]. This server is a shared computing resource that allows access to powerful

computing resources, including multiple GPUs. This sped up our training and development

process as well as allowed us to train models with more complex architectures.

Additionally, a dedicated AWS server was provided to run our classification/translation

engine’s REST server. This server connects with the front-end to allow data to be sent

from the user interface to the classification/translation server.

4.5 Financial Requirements

This project does not provide or require any financial resources. All the required

resources will be provided to us as needed.

30

5. Testing and Implementation

5.1 Interface Specifications

This project does not contain any interfacing between hardware and software

components, as it consists entirely of three software parts: the IntelliJ plugin (client),

OpenNMT-py (the translation engine into which we feed our model), and the

OpenNMT-py REST server (hosted on an AWS server). However, there are interfaces

between the user and the plugin as well as the plugin and the OpenNMT-py system, which

are described below.

The chosen IDE for this project is an IntelliJ plugin. This interface is a good way to present

our plugin to a user that is wanting to write code without using an actual programming

language such as Java. IntelliJ’s user interface is easy to become familiar with but has

many advanced options for more adept users. An IntelliJ plugin is needed to integrate our

software with the IDE. NLTK is used to preprocess the original natural language

statement to remove unnecessary words from translation.

To convert the natural language to code within the IntelliJ editor, the user selects the

natural language they typed and triggers our plugin. This process interfaces with the

end-to-end system that consists of the dataset and classification/translation REST engine,

which is located on a dedicated server.

5.2 Hardware and Software

For hardware, the Pronto shared computing resource was used to train and test the

classification model, and we used our personal computers for the rest of the development,

which includes creating the user interface. In order to provide our translation engine as a

service, we hosted it on an AWS EC2 server.

31

In terms of software, we used the IntelliJ Platform SDK to develop the IntelliJ plugin that

was used for the user interface. OpenNMT-py was used to implement the

classification/translation engine and server. NLTK was used to preprocess the natural

language statements before passing them to OpenNMT-py. GitLab was used for source

control, collaboration, and maintaining the project history. Trello was used for project

management and distributing the work among team members.

5.3 Functional Testing

We wrote automated unit, GUI, and integration tests for the user interface component of

the project. This ensured that the system both meets our specified requirements and

behaves correctly as an end-to-end system. These tests were written throughout the

development process to catch bugs early. Additionally, where appropriate, the test-driven

development methodology was used in front-end development.

Our client and graduate student performed acceptance testing on the plugin at weekly

meetings to evaluate the direction our software is going, specifically the user interface

aspect, to confirm that the product meets requirements, and to make recommendations

for future improvements.

Following standard Java practices, the Intellij plugin has tests located in src/test/java.

These tests cover functionality within the plugin itself, such as whether the translate

action calls an external API and whether text preprocessing is performed correctly.

5.4 Non-Functional Testing

As mentioned in the feasibility section of this design document, the success rate of similar

projects is not high. Our application aims to improve on the AnyCode accuracy benchmark

of around 36% [7]. Most of the current systems, which support more general statement

translations, obtain around a 25%-35% success rate.

32

In terms of other non-functional requirements for the application, the first requirement

we focused on is the appearance of the plugin application. The plugin should be easy to

use, and easy to access and should have a user interface that is fairly simple and fast. This

user interface was essentially designed for a user who is adept with a computer but

shouldn’t overwhelm them with information.

Another area of non-functional testing that is considered is security. Given that we will

have a public REST server running to serve clients the results of our translated model, we

ensured that best practices in security are followed, such as blocking unused ports from

the outside internet and delivering data over secure TLS connections.

5.5 Process

Unit, GUI, and integration tests were written throughout the development process to test

the functionality of the user interface and the end-to-end system. This ensured that we

caught bugs or missed requirements early. During the development of our dataset and

classification/translation engine, we tested the effectiveness of our dataset and

classification/translation engine architecture and hyperparameters. This was done by

running our dataset through our designed neural machine translation architecture and

observing the results according to research comparison and neural machine translation

metrics such a BLEU and calculating the translation accuracy. Modifications to our system

were made when unexpected results were observed. This cycle continued until we

achieved all requirements and achieved accurate translation results.

5.6 Results

Dataset Creation

First, we generated a simple Java print statement dataset that contained different ways to

say print with some different values to print. The translated results can be seen below:

33

Figure 4. Initial Java Print Dataset Output

We observed that System.out.println(“”); was being correctly generated for each entry;

however, the value that was supposed to be printed was not. From this testing, we learned

that the default OpenNMT-py configuration can correctly translate common code (in this

case the Java print statement).

We then created a more targeted Java print statement dataset consisting of “print

number” where number represents all numbers from 1 to 100,000 written in words and in

numerical representation. After running this new dataset through our translation model,

we achieved the following results:

Figure 5. Java Print Number Output

34

We could see that the model is now populating the print statement with values; however,

these values were not correct (they were supposed to be numbers 1-10). After observing

these results, we started experimenting with the OpenNMT-py network architecture and

hyperparameters.

OpenNMT-py Configuration

First, we tried using the Transformer architecture. Passing the same dataset through, we

achieved the following results:

Figure 6. Java Print Number Transformer Dataset

For some reason, the results achieved were worse than the basic network architecture.

This could have been due to the Transformer model requiring many GPU resources, so we

have to scale down some of the parameters.

Next, we tried using an RNN network architecture. After running the same dataset

through the RNN architecture, we achieved the following results:

35

Figure 7. Java Print Number RNN Output

These results are exactly what we expect. From this experiment, we learned that values

that are contained within the training dataset have a high probability of being translated

correctly during testing.

Complex Dataset

After confirming our results using a basic dataset, we then tested our results on more

complex datasets. The first dataset we tried was the Python Parallel Code Corpora [9].

This dataset consisted of automatically generated natural language to code translations

generated from Stack Overflow. After running this dataset through OpenNMT-py, we

achieved the following results:

36

Figure 8. Python Parallel Corpora Output

The results achieved for this dataset are not ideal. It did pull out common syntax (DCSP

and return), but the results were not accurate. This is likely due to the natural language

statements and expected code translation being very complex (many lines with

uncommon syntax).

We then began researching other datasets when we found the Conala dataset [10]. This

dataset again was created using automated mining methods from Stack Overflow.

However, this dataset also contained manually generated data points that the automatic

generation system used when mining. After running this dataset through our system with

the Transformer architecture on more powerful GPU resources, we achieved the

following results:

Figure 9. Conala Dataset Output

We observed that the results resembled their expected code much more closely. This led

us to determine how we can create a more accurate dataset that would achieve greater

performance or how we can update our network architecture to achieve better results on

the Conala dataset.

Next, we generated a dataset targeting the Java print statement. Our dataset contained

various hardcoded strings, arithmetic, variables, and function calls. After running the

dataset through our system, we received the following results and metrics:

37

Figure 10. Conala Dataset Translations

Figure 11. Conala Dataset BLEU Score

Accuracy = 40%

We observed that the arithmetic statements were translated correctly almost all the time,

but string values were not. Additionally, variables and function calls had an accurate

38

translation. These results led us to create a dataset that supports more generalized

natural language inputs.

The next dataset we created included different types of Java method invocations that

were mined from online sources like GitHub using the GitHub API with the Octokit C#

library. The natural language part of the dataset consisted of only verbs representing the

action or method and nouns representing the method parameters. All other parts of the

sentence were removed to allow OpenNMT-py to focus on the more important parts of

the sentence. The method parameters and variables were converted to their Java types.

Our final dataset consisted of approximately 1,000 Java different method invocations and

about 1,500 total samples.

A snippet of the results can be seen below:

In total, our system has about 50-60% accuracy and a BLEU score of 66.5, showing that

our preprocessing method is a good solution to this problem. The accuracy results achieve

the about 50% accuracy we were aiming for while the BLEU score highly exceeds our

expectations.

39

6. Implementation

6.1 IntelliJ Plugin

The IntelliJ plugin acts as the user interface of the project. Here, the user is presented

with a Java IDE text editor where the user can enter natural language statements or

normal Java code. If the user enters a natural language statement, they can interact with

the translation button that will preprocess that natural language statement by converting

the method parameters and variables to their types and format the sentence into

verb-noun format by calling a Python script hosted on our AWS server. An example of this

translation can be seen below:

Input Statement: ​return the char value at index pos+1 for str

Preprocessed Statement: ​return char value index int string

The above example shows that the variables pos+1 and str are converted into their Java

types of int and string respectively. Also, only the verbs and nouns from the original input

sentence remain after preprocessing while the other parts of the sentence are removed.

While it is not required, to achieve better translation results, the user is encouraged to

follow the below steps:

● Do not include spaces between multiple words or operations in raw natural

language statement

● Do not include commas between method parameters in natural language input

● Avoid using punctuation in raw natural language statement

● Write hardcoded String surrounded by double quotes in raw natural language

statement

● Include all information about objects being called and nested and chained method

information

○ Only the last method call will be translated in a chained method call chain

○ Nested method invocations will be written as is in natural language

statement

This helps the OpenNMT-py translation engine to focus on the most important words,

leading to more accurate translation results. A restriction to our system is that only the

40

outermost method (in the case of nested method invocations) and the last method (in the

case of a chained method invocation) are translated. This means that all other methods in

a nested or chained method call must be explicitly stated by the user as input.

A screenshot of the IntelliJ Plugin interface and functionality is shown below:

Figure 12. IntelliJ Plugin User Interface

The above screenshot shows the text area where there is a mix of normal Java code and a

natural language statement. The user then interacted with the natural language

statement (find the max of x and y) first selecting it and left clicking on it to select the

translate option, triggering the preprocessing and translations actions. During the

translation process, the OpenNMT-py translation engine runs the preprocessed natural

language statement through the trained model and returns the top-n most confident

expected Java code translations. The user can then click on the suggestion they want and

that code snippet will be populated in the location in the text editor where the original

statement was. In general, the user interface is used to support most of the functional

requirements.

6.2 Dataset

A significant part of this project involved creating a dataset that consisted of the natural

language statement, equivalent Java code pairs. The natural language statements are in

the verb-noun format described above with each parameter converted into their type.

This will allow preprocessed user input natural language statements to be in the same

format as the dataset natural language labels and generalize better given that our system

cannot account for every possible variable or method name. Additionally, the natural

41

language labels for each method were generated by starting with the Java documentation

description of the method. This ensured more uniform dataset labeling since six different

members were labeling the dataset. The Java code consists of the method format with its

parameters stored as their type and each token separated by a space. Creating the

dataset in this format allowed our neural machine translation system to focus on the main

parts of the sentence during translation, helping to reduce the ambiguity of natural

language as the description of the method would map to the method name and the Java

type parameters would map to each other.

The Java method invocations in the dataset were automatically mined using the C#

Octokit library and GitHub API. The natural language statements were manually

generated but automatically preprocessed to put them in the required dataset format.

6.3 Classification and Translation Engine

OpenNMT-py, a neural machine translation system, was used to convert the natural

language statement to its equivalent Java code. The classification engine of OpenNMT-py

would take the dataset explained above and train a model using the transformer

architecture (a commonly used and well performing neural machine translation

architecture). This trained model would then be passed to the translation engine. The

translation engine would then take the preprocessed input from the user interface and

run it through the trained model. The five most confident expected code translations

would then be passed as output to the user interface to be displayed. The communication

between the user interface and the translation engine takes place using OpenNMT-py’s

REST API interface. The OpenNMT-py REST API is hosted on an AWS server.

42

7. Closing Material

7.1 Conclusion

7.1.1 Development Progress

In the development of the Intelligent Code Editor, we have done the following:

● Looked into existing tools related to NLP (Natural Language Processing) and its use

in translating natural language to code

○ Discovered OpenNMT, an open-source neural machine translation system

○ Used for research on various translations (image-to-text,

English-to-Spanish) [4]

● Completed a literature analysis on research related to translating natural language

to code

○ A paper on a tool called ​anyCode ​ was particularly insightful [7]

● Worked on the development of the plugin

○ Made prototype plugins for Visual Studio Code, IntelliJ, and Eclipse

○ Ultimately decided to develop the plugin for IntelliJ

● Created an IntelliJ plugin

○ Allows the user to enter and select natural language in the code editor

○ Passes the entered natural language statement to the preprocessing script

and the translation engine

○ Receives the expected code translation back from the translation engine

○ Uses context to assign variables a generic name myVar to ease the burden

on the translation engine

● OpenNMT-py Configuration

○ Configured OpenNMT-py on the Pronto GPU server

○ Determined how to run a dataset through the classification engine

○ Determine how to adjust network architecture and hyperparameters

○ Researched and tested different datasets, architectures, and

hyperparameters

● Dataset Creation

43

○ Created a Java print statement dataset to use as a baseline for our

translation results

● NLTK Preprocessing

○ Preprocess the original natural language statement into Verb-Noun format

■ Example: ​stop thread ​ (​stop​ is the verb and ​thread ​ is the noun)

○ Change all verbs to present tense

○ Convert all characters to lowercase

● Method Invocation Dataset Creation

○ Automatically mine Java method invocation statements from online sources

like GitHub

○ Label the natural language statement part of these mined statements using

Verb-Noun format

● Create a Part of Speech Tagger

○ Create a part of speech tagger that more accurately labels the verbs and

nouns in programming domain sentences

● User Interface Parameter Mapping

○ Create technique for front-end to convert the input natural language

statement variables and method parameters to their Java types.

● AWS Server Integration

○ Hosted the NLTK preprocessing script and OpenNMT-py REST API on AWS

■ Preprocessing script deployed as an AWS Lambda function

■ OpenNMT-py server running continuously on dedicated EC2

instance

● End-to-end System Integration

○ Connected each of the components together to create a fully integrated

final system

While we were able to create a system that has about 50-60% accuracy, further

improvements could be made to improve our system in the future.

Potential Ways to Improve Accuracy

● Problem​: <unk> token issues

○ Information​: <unk> token errors occur when there are words that are not

contained in the trained models vocabulary

44

○ Solution​: Determine a better way to handle <unk> token errors

■ Could use a system like GloBE word embeddings to find the most

likely word given all the words stored in the vocabulary

■ The conala dataset used conditional probabilities to find the most

likely word match from the vocabulary

■ Include a greater variety of programming domain words in our

trained vocabulary

● Problem​: Lack of generalization in preprocessing

○ Information​: Since we are manually generating the natural language

statements for the code translations, there are limitations to the results

given that we cannot generate all possible word substitutions or sentence

structures

○ Solution​: These could be improved using automated methods to preprocess

the sentence.

■ Something similar to AnyCode’s WordNet could be used to generate

all possible word substitutions

■ NLTK parse trees could be used to generate different sentence

structures

● We could also see about using the part of speech information

in our neural machine translation system

● Problem​: Having the system try to guess the correct output instead of trying to

match to the best output

○ Information​: Since our translations are not guaranteed to be a valid Java

method, this could cause the translations to be a little off, but that could

result in an invalid Java translation

○ Solution​: Some other systems try to match to the most likely translation

from a list of possible valid translations

● Again, this could be improved by using something like GloBE

word embeddings or Conala dataset conditional probabilities

that could choose the translation with the most likely

translation

● Problem​: Our dataset is not trained on every possible Java method invocation

45

○ Information​: Since our model is only trained on the most frequent Java

method invocations from the top GitHub Java projects, not all the Java

methods are included

○ Solution​: We could create a system that supports all built-in Java methods

or a focus group (like Machine Learning)

■ We could mine our Java methods from the Java documentation

instead of GitHub

■ If we use a subset, we could mine our Java methods from that

framework’s API

● Problem​: OpenNMT-py not having the best translation results

○ Information​: Hung showed us Google-NMT that generally had better BLEU

results compared to OpenNMT-py

○ Solution​: We could implement our neural machine translation system using

a better translation system

● Problem​: Lacking supercomputers to train the model on

○ Information​: Google spent about a week with 96 TPUs training their basic

translation model, so our training resources are lacking compared to these

○ Solution​: This could be solved by trying to find more power computing

resources to train the model on

● Problem​: Manual labeling process is tedious and may lead to inconsistent labeling

among different people, even with specific instructions to follow like we had

○ Information​: Obtaining a large sample of Java method invocations is nearly

trivial, as Keaton’s work has shown us. We were able to mine only method

invocations fairly precisely out of huge Java projects on GitHub.

○ Solution​: Professor Jannesari suggested techniques such as RenderGAN

(​https://arxiv.org/pdf/1611.01331.pdf​) to generate labeled data. Amazon

AWS provides a service for automating data labeling that might use papers

like RenderGAN under the hood:

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-data-labeling.html

● Problem​: Unlike the ​anyCode ​ paper, we did not do as much NLP before using the

data in the model.

○ Solution​: Professor Jannesari suggested that building a layer upon BERT

(​https://github.com/google-research/bert#what-is-bert​) might improve

results.

46

https://arxiv.org/pdf/1611.01331.pdf
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-data-labeling.html
https://github.com/google-research/bert#what-is-bert

7.2 References

[1] JetBrains IntelliJ Platform SDK. (2019). ​Creating Your First Plugin​. [online] Available at:

http://www.jetbrains.org/intellij/sdk/docs/basics/getting_started.html [Accessed 30 Sep. 2019].

[2] Amsden, J. (2019). ​Your First Plug-In​. [online] Eclipse.org. Available at:

https://www.eclipse.org/articles/Article-Your%20First%20Plug-in/YourFirstPlugin.html [Accessed

30 Sep. 2019].

[3] Code, V. (2019). ​Extension API​. [online] Code.visualstudio.com. Available at:

https://code.visualstudio.com/api [Accessed 24 Sep. 2019].

[4] Wu, Y., Schuster, M., Chen, Z., Le, Q. and Norouzi, M. (2016). ​Google’s Neural Machine

Translation System: Bridging the Gap between Human and Machine Translation​. [online]

Google. Available at: https://arxiv.org/pdf/1609.08144.pdf [Accessed 30 Sep. 2019].

[5] Opennmt.net. (2019). ​Contents — OpenNMT-py documentation​. [online] Available at:

http://opennmt.net/OpenNMT-py/ [Accessed 24 Sep. 2019].

[6] Lin, X., Wang, C., Pang, D., Vu, K., Zettlemoyer, L. and Ernst, M. (2019). ​Program Synthesis

from Natural Language Using Recurrent Neural Networks​. [online] Seattle, WA, USA: Paul G.

Allen School of Computer Science & Engineering. Available at:

https://homes.cs.washington.edu/~mernst/pubs/nl-command-tr170301.pdf [Accessed 24 Sep.

2019].

[7] T. Gvero and V. Kuncak, “Synthesizing Java expressions from free-form queries,” ACM

SIGPLAN Notices, vol. 50, no. 10, pp. 416–432, 2015.

[8] Researchit.las.iastate.edu. (2019). ​Pronto Job Manager | ResearchIT​. [online] Available at:

https://researchit.las.iastate.edu/pronto [Accessed 24 Oct. 2019].

[9] Valerio, A., Barone, M. and Sennrich, R. (2017). A parallel corpus of Python functions and

documentation strings for automated code documentation and code generation. [online]

Available at: https://arxiv.org/pdf/1707.02275.pdf [Accessed 24 Oct. 2019].

[10] Yin, P., Deng, B., Chen, E., Vasilescu, B. and Neubig, G. (2018). Learning to Mine Aligned

Code and Natural Language Pairs from Stack Overflow. [online] Available at:

https://arxiv.org/pdf/1805.08949.pdf [Accessed 24 Oct. 2019].

47

7.3 Appendices

7.3.1 Operation Manual

Setup/Demo:

1. After obtaining access, clone our project’s GitLab repository at

https://git.linux.iastate.edu/hungphd/sdmay19-intelligent-code-editor-gitlab

Figure 13. Git Clone Project Command

2. Open the project in IntelliJ IDEA. (/intellij-plugin)

Figure 14. IntelliJ Plugin Project Folder

3. Create a new run configuration. From the templates, choose Gradle. Set this

project as the Gradle project and add :runIde to Tasks.

48

https://git.linux.iastate.edu/hungphd/sdmay19-intelligent-code-editor-gitlab

Figure 15. Gradle Build Parameters

4. After running the configuration, you will know that it works if another IntelliJ

window opens. This new window has the plugin installed.

5. To obtain translations from the OpenNMT-py server, you'll need to have that

running as well. Refer to these​ ​installation instructions​.

Figure 16. OpenNMT-py REST API Server Configuration Command

6. Download a trained model from our Google Drive (they end in .pt) and save it to

available_models.

7. Create a conf.json in available_models with the following contents:

49

http://opennmt.net/OpenNMT-py/main.html#installation
http://opennmt.net/OpenNMT-py/main.html#installation

Figure 17. conf.json File Contents

Change the model name if needed. Then start the server using​ ​these instructions​.

After the server starts, you should be able to select text in the development IntelliJ

window and use either Shift+T or the context menu to trigger the translation action. Note

that only one statement can be translated at a time.

Figure 18. User Interface Statement Selection​ ​and Results

50

http://forum.opennmt.net/t/simple-opennmt-py-rest-server/1392
http://forum.opennmt.net/t/simple-opennmt-py-rest-server/1392

Now the user can select from the list of possible translations. Once they click on a possible

translation, it will be displayed and executable in the IDE.

7.3.2 Previous Design Versions and Lessons Learned

The first design version consisted of translations for only a single type of command: the

Java print statement (System.out.println()). For this version, we created a dataset that

consisted of english statements that were to be translated to some form of a Java print

statement. This initial targeted dataset allowed us to learn about what kinds of data

resulted in the best translation results. Through creating this dataset, we also learned

about the importance of using diverse statement translations to create a well distributed

dataset. This allowed us to create our dataset using statement translations from many

different resources like GitHub in later revisions instead of creating the entire dataset

manually. Doing so gave us better and more general translation results.

For the neural machine translation system, we used OpenNMT-py to train on the Java

print dataset. When a user entered the natural language statement, that raw statement

would be run through the OpenNMT-py system and would be converted to the respective

Java print dataset. An issue that we ran into with this approach was that we were relying

on the OpenNMT-py system too much for the translations. During our final presentation

for CprE 491, we received a suggestion to only use the neural machine translation system

to translate more specific types of statements rather than all types of statements. With

this feedback, we then transitioned into the next version of our project, utilizing

preprocessing of the English statements.

The second major revision of the project included input and dataset natural language and

Java code statement preprocessing and creating a more diverse dataset that contained

multiple types of Java method invocations from online code sources like GitHub. The

natural language statement preprocessing consisted of only keeping the verbs and nouns

from the original statement and converting all words to present tense and all characters

to lowercase. Doing so would remove the less important parts of the original statement,

which would allow the OpenNMT-py translation engine to focus on the most important

words. Later, we also limited the scope of our project by only translating the outermost or

last method call in a nested or chained method sequence respectively, allowing for simpler

translation results. Future groups may remove this restriction.

51

Mining the Java method invocation statements from sources like GitHub allows for a

more diverse representation in the dataset with real-world use cases. This also allowed us

to determine what the most commonly used Java methods are to ensure our system

supported them. To label the dataset, we all followed a team-defined set of steps to

ensure labeling uniformity between members. During the creation of this version of the

project, we learned the importance of data mining, preprocessing, and generalization.

7.3.3 Code

All code related to our project can be found in our GitLab repository. Note that the

professor has not given public access to this repository, therefore you will need to contact

him first. ​jannesar@iastate.edu

https://git.linux.iastate.edu/hungphd/sdmay19-intelligent-code-editor-gitlab

52

mailto:jannesar@iastate.edu
https://git.linux.iastate.edu/hungphd/sdmay19-intelligent-code-editor-gitlab

